690 research outputs found

    Optimized Deep Learning Models for AUV Seabed Image Analysis

    Full text link
    Using autonomous underwater vehicles, or AUVs, has completely changed how we gather data from the ocean floor. AUV innovation has advanced significantly, especially in the analysis of images, due to the increasing need for accurate and efficient seafloor mapping. This blog post provides a detailed summary and comparison of the most current advancements in AUV seafloor image processing. We will go into the realm of undersea technology, covering everything through computer and algorithmic advancements to advances in sensors and cameras. After reading this page through to the end, you will have a solid understanding of the most up-to-date techniques and tools for using AUVs to process seabed photos and how they could further our comprehension of the ocean floorComment: 6 pages , 4 figure

    Near-infrared optical properties and proposed phase-change usefulness of transition metal disulfides

    Full text link
    The development of photonic integrated circuits would benefit from a wider selection of materials that can strongly-control near-infrared (NIR) light. Transition metal dichalcogenides (TMDs) have been explored extensively for visible spectrum opto-electronics, but the NIR properties of these layered materials have been less-studied. The measurement of optical constants is the foremost step to qualify TMDs for use in NIR photonics. Here we measure the complex optical constants for select sulfide TMDs (bulk crystals of MoS2, TiS2 and ZrS2) via spectroscopic ellipsometry in the visible-to-NIR range. Through Mueller matrix measurements and generalized ellipsometry, we explicitly measure the direction of the ordinary optical axis. We support our measurements with density functional theory (DFT) calculations, which agree with our measurements and predict giant birefringence. We further propose that TMDs could find use as photonic phase-change materials, by designing alloys that are thermodynamically adjacent to phase boundaries between competing crystal structures, to realize martensitic (i.e. displacive, order-order) switching.Comment: supplementary at end of document. 6 main figure

    Leading Meaningful Change

    Get PDF
    While strategic planning is often approached from a theoretical perspective, it is in the implementation that the rubber hits the road. The importance of leadership in this shift from a theoretical plan to actual implementation cannot be underestimated. Change agents from a variety of institutional types—community college, public institution, and private institution—will discuss strategies used to inspire and guide others toward the achievement of shared objectives while managing institutional complexities. You will learn about issues leaders must successfully address to implement a meaningful strategic planning process

    Academic Budget Prioritization in a Shared Governance University

    Get PDF
    Academic program review and budget prioritization in a shared governance environment with transparency and results was critical for Minnesota State University-Mankato, in preparation for forecasted budget reductions. Using an interactive format, this session will review the development of program evaluation metrics, highlight the process and timeline used, present key lessons learned, and provide attendees an opportunity to consider application on their home campus

    Effective Disaster Management by Efficient Usage of Resources

    Full text link
    Disaster Management can be merely defined as the organization and management of resources and responsibilities for dealing with all humanitarian aspects of crises, in specific preparedness, rejoinder and recapture in order to diminish the influence of disasters. But the affects of the disaster increases only when the information about the disaster is unknown and when the resources for the disaster management is not correctly used. Now there are several methods for forecast the disaster, But there are no any effective methods for handling the resources needed for both managing the disaster and also for rehabilitation purpose. Thus this paper proposes an application used for managing the disaster and handling the rehabilitation process. This application which deals with almost all the resources those are required for the management of disaster. This proposed application which is based on java programming language. This project also has a great scope of enhancement in future

    Use of massively multiple merged data for low‐resolution S‐SAD phasing and refinement of flavivirus NS1

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109310/1/S1399004714017556.pd

    Identification, Distribution, and Biology of Fire Ants in Texas.

    Get PDF
    25 p

    Expanded binding specificity of the human histone chaperone NASP

    Get PDF
    NASP (nuclear autoantigenic sperm protein) has been reported to be an H1-specific histone chaperone. However, NASP shares a high degree of sequence similarity with the N1/N2 family of proteins, whose members are H3/H4-specific histone chaperones. To resolve this paradox, we have performed a detailed and quantitative analysis of the binding specificity of human NASP. Our results confirm that NASP can interact with histone H1 and that this interaction occurs with high affinity. In addition, multiple in vitro and in vivo experiments, including native gel electrophoresis, traditional and affinity chromatography assays and surface plasmon resonance, all indicate that NASP also forms distinct, high specificity complexes with histones H3 and H4. The interaction between NASP and histones H3 and H4 is functional as NASP is active in in vitro chromatin assembly assays using histone substrates depleted of H1

    A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens

    Get PDF
    In most studies aimed at localizing footprints of past selection, outliers at tails of the empirical distribution of a given test statistic are assumed to reflect locus-specific selective forces. Significance cutoffs are subjectively determined, rather than being related to a clear set of hypotheses. Here, we define an empirical p-value for the summary statistic by means of a permutation method that uses the observed SNP structure in the real data. To illustrate the methodology, we applied our approach to a panel of 2.9 million autosomal SNPs identified from re-sequencing a pool of 15 individuals from a brown egg layer line. We scanned the genome for local reductions in heterozygosity, suggestive of selective sweeps. We also employed a modified sliding window approach that accounts for gaps in the sequence and increases scanning resolution by moving the overlapping windows by steps of one SNP only, and suggest to call this a "creeping window" strategy. The approach confirmed selective sweeps in the region of previously described candidate genes, i.e. TSHR, PRL, PRLHR, INSR, LEPR, IGF1, and NRAMP1 when used as positive controls. The genome scan revealed 82 distinct regions with strong evidence of selection (genome-wide p-value<0.001), including genes known to be associated with eggshell structure and immune system such as CALB1 and GAL cluster, respectively. A substantial proportion of signals was found in poor gene content regions including the most extreme signal on chromosome 1. The observation of multiple signals in a highly selected layer line of chicken is consistent with the hypothesis that egg production is a complex trait controlled by many genes

    A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects.

    Full text link
    Achieving adequate healing in large or load-bearing bone defects is highly challenging even with surgical intervention. The clinical standard of repairing bone defects using autografts or allografts has many drawbacks. A bioactive ceramic scaffold, strontium-hardystonite-gahnite or "Sr-HT-Gahnite" (a multi-component, calcium silicate-based ceramic) is developed, which when 3D-printed combines high strength with outstanding bone regeneration ability. In this study, the performance of purely synthetic, 3D-printed Sr-HT-Gahnite scaffolds is assessed in repairing large and load-bearing bone defects. The scaffolds are implanted into critical-sized segmental defects in sheep tibia for 3 and 12 months, with bone autografts used for comparison. The scaffolds induce substantial bone formation and defect bridging after 12 months, as indicated by X-ray, micro-computed tomography, and histological and biomechanical analyses. Detailed analysis of the bone-scaffold interface using focused ion beam scanning electron microscopy and multiphoton microscopy shows scaffold degradation and maturation of the newly formed bone. In silico modeling of strain energy distribution in the scaffolds reveal the importance of surgical fixation and mechanical loading on long-term bone regeneration. The clinical application of 3D-printed Sr-HT-Gahnite scaffolds as a synthetic bone substitute can potentially improve the repair of challenging bone defects and overcome the limitations of bone graft transplantation
    corecore