801 research outputs found

    Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients. results from the BACH Study (Biomarkers in ACute Heart Failure)

    Get PDF
    Objectives: The purpose of this study was to assess the impact of atrial fibrillation (AF) on the performance of mid-region amino terminal pro-atrial natriuretic peptide (MR-proANP) in comparison with the B-type peptides (BNP and NT-proBNP) for diagnosis of acute heart failure (HF) in dyspneic patients. Background: The effects of AF on the diagnostic and prognostic performance of MR-proANP in comparison with the B type natriuretic peptides have not been previously reported. Methods: A total of 1,445 patients attending the emergency department with acute dyspnea had measurements taken of MR-proANP, BNP, and NT-proBNP values on enrollment to the BACH trial and were grouped according to presence or absence of AF and HF. Results: AF was present in 242 patients. Plasma concentrations of all three peptides were lowest in those with neither AF nor HF and AF without HF was associated with markedly increased levels (p < 0.00001). HF with or without AF was associated with a significant further increment (p < 0.00001 for all three markers). Areas under receiver operator characteristic curves (AUCs) for discrimination of acute HF were similar and powerful for all peptides without AF (0.893 to 0.912; all p < 0.001) with substantial and similar reductions (0.701 to 0.757) in the presence of AF. All 3 peptides were independently prognostic but there was no interaction between any peptide and AF for prediction of all-cause mortality. Conclusions: AF is associated with increased plasma natriuretic peptide (MR-proANP, BNP and NT-proBNP) levels in the absence of HF. The diagnostic performance of all three peptides is impaired by AF. This warrants consideration of adjusted peptide thresholds for diagnostic use in AF and mandates the continued search for markers free of confounding by AF

    Acute treatment with omecamtiv mecarbil to increase contractility in acute heart failure

    Get PDF
    Background: Omecamtiv mecarbil (OM) is a selective cardiac myosin activator that increases myocardial function in healthy volunteers and in patients with chronic heart failure. Objectives: This study evaluated the pharmacokinetics, pharmacodynamics, tolerability, safety, and efficacy of OM in patients with acute heart failure (AHF). Methods: Patients admitted for AHF with left ventricular ejection fraction ≀40%, dyspnea, and elevated plasma concentrations of natriuretic peptides were randomized to receive a double-blind, 48-h intravenous infusion of placebo or OM in 3 sequential, escalating-dose cohorts. Results: In 606 patients, OM did not improve the primary endpoint of dyspnea relief (3 OM dose groups and pooled placebo: placebo, 41%; OM cohort 1, 42%; cohort 2, 47%; cohort 3, 51%; p = 0.33) or any of the secondary outcomes studied. In supplemental, pre-specified analyses, OM resulted in greater dyspnea relief at 48 h (placebo, 37% vs. OM, 51%; p = 0.034) and through 5 days (p = 0.038) in the high-dose cohort. OM exerted plasma concentration-related increases in left ventricular systolic ejection time (p < 0.0001) and decreases in end-systolic dimension (p < 0.05). The adverse event profile and tolerability of OM were similar to those of placebo, without increases in ventricular or supraventricular tachyarrhythmias. Plasma troponin concentrations were higher in OM-treated patients compared with placebo (median difference at 48 h, 0.004 ng/ml), but with no obvious relationship with OM concentration (p = 0.95). Conclusions: In patients with AHF, intravenous OM did not meet the primary endpoint of dyspnea improvement, but it was generally well tolerated, it increased systolic ejection time, and it may have improved dyspnea in the high-dose group. (Acute Treatment with Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure [ATOMIC-AHF]; NCT01300013)

    A network analysis to compare biomarker profiles in patients with and without diabetes mellitus in acute heart failure

    Get PDF
    Aims: It is unclear whether distinct pathophysiological processes are present among patients with acute heart failure (AHF), with and without diabetes. Network analysis of biomarkers may identify correlative associations that reflect different pathophysiological pathways. Methods and results: We analysed a panel of 48 circulating biomarkers measured within 24 h of admission for AHF in a subset of patients enrolled in the PROTECT trial. In patients with and without diabetes, we performed a network analysis to identify correlations between measured biomarkers. Compared with patients without diabetes (n = 1111), those with diabetes (n = 922) had a higher prevalence of ischaemic heart disease and traditional coronary risk factors. After multivariable adjustment, patients with and without diabetes had significantly different levels of biomarkers across a spectrum of pathophysiological domains, including inflammation (TNFR-1a, periostin), cardiomyocyte stretch (BNP), angiogenesis (VEGFR, angiogenin), and renal function (NGAL, KIM-1) (adjusted P-value <0.05). Among patients with diabetes, network analysis revealed that periostin strongly clustered with C-reactive protein and interleukin-6. Furthermore, renal markers (creatinine and NGAL) closely associated with potassium and glucose. These findings were not seen among patients without diabetes. Conclusion: Patients with AHF and diabetes, compared with those without diabetes, have distinct biomarker profiles. Network analysis suggests that cardiac remodelling, inflammation, and fibrosis are closely associated with each other in patients with diabetes. Furthermore, potassium levels may be sensitive to changes in renal function as reflected by the strong renal–potassium–glucose correlation. These findings were not seen among patients without diabetes and may suggest distinct pathophysiological processes among AHF patients with diabetes

    Rolofylline, an adenosine A1−receptor antagonist, in acute heart failure

    Get PDF
    Background: Worsening renal function, which is associated with adverse outcomes, often develops in patients with acute heart failure. Experimental and clinical studies suggest that counterregulatory responses mediated by adenosine may be involved. We tested the hypothesis that the use of rolofylline, an adenosine A1−receptor antagonist, would improve dyspnea, reduce the risk of worsening renal function, and lead to a more favorable clinical course in patients with acute heart failure. Methods: We conducted a multicenter, double-blind, placebo-controlled trial involving patients hospitalized for acute heart failure with impaired renal function. Within 24 hours after presentation, 2033 patients were randomly assigned, in a 2:1 ratio, to receive daily intravenous rolofylline (30 mg) or placebo for up to 3 days. The primary end point was treatment success, treatment failure, or no change in the patient’s clinical condition; this end point was defined according to survival, heart-failure status, and changes in renal function. Secondary end points were the post-treatment development of persistent renal impairment and the 60-day rate of death or readmission for cardiovascular or renal causes. Results: Rolofylline, as compared with placebo, did not provide a benefit with respect to the primary end point (odds ratio, 0.92; 95% confidence interval, 0.78 to 1.09; P=0.35). Persistent renal impairment developed in 15.0% of patients in the rolofylline group and in 13.7% of patients in the placebo group (P=0.44). By 60 days, death or readmission for cardiovascular or renal causes had occurred in similar proportions of patients assigned to rolofylline and placebo (30.7% and 31.9%, respectively; P=0.86). Adverse-event rates were similar overall; however, only patients in the rolofylline group had seizures, a known potential adverse effect of A1-receptor antagonists. Conclusions: Rolofylline did not have a favorable effect with respect to the primary clinical composite end point, nor did it improve renal function or 60-day outcomes. It does not show promise in the treatment of acute heart failure with renal dysfunction. (Funded by NovaCardia, a subsidiary of Merck; ClinicalTrials.gov numbers, NCT00328692 and NCT00354458.

    Biomarker profiles of acute heart failure patients with a mid-range ejection fraction

    Get PDF
    OBJECTIVES: In this study, the authors used biomarker profiles to characterize differences between patients with acute heart failure with a midrange ejection fraction (HFmrEF) and compare them with patients with a reduced (heart failure with a reduced ejection fraction [HFrEF]) and preserved (heart failure with a preserved ejection fraction [HFpEF]) ejection fraction. BACKGROUND: Limited data are available on biomarker profiles in acute HFmrEF. METHODS: A panel of 37 biomarkers from different pathophysiological domains (e.g., myocardial stretch, inflammation, angiogenesis, oxidative stress, hematopoiesis) were measured at admission and after 24 h in 843 acute heart failure patients from the PROTECT trial. HFpEF was defined as left ventricular ejection fraction (LVEF) of ≄50% (n = 108), HFrEF as LVEF of <40% (n = 607), and HFmrEF as LVEF of 40% to 49% (n = 128). RESULTS: Hemoglobin and brain natriuretic peptide levels (300 pg/ml [HFpEF]; 397 pg/ml [HFmrEF]; 521 pg/ml [HFrEF]; ptrend <0.001) showed an upward trend with decreasing LVEF. Network analysis showed that in HFrEF interactions between biomarkers were mostly related to cardiac stretch, whereas in HFpEF, biomarker interactions were mostly related to inflammation. In HFmrEF, biomarker interactions were both related to inflammation and cardiac stretch. In HFpEF and HFmrEF (but not in HFrEF), remodeling markers at admission and changes in levels of inflammatory markers across the first 24 h were predictive for all-cause mortality and rehospitalization at 60 days (pinteraction <0.05). CONCLUSIONS: Biomarker profiles in patients with acute HFrEF were mainly related to cardiac stretch and in HFpEF related to inflammation. Patients with HFmrEF showed an intermediate biomarker profile with biomarker interactions between both cardiac stretch and inflammation markers. (PROTECT-1: A Study of the Selective A1 Adenosine Receptor Antagonist KW-3902 for Patients Hospitalized With Acute HF and Volume Overload to Assess Treatment Effect on Congestion and Renal Function; NCT00328692)

    A combined clinical and biomarker approach to predict diuretic response in acute heart failure

    Get PDF
    Background: Poor diuretic response in acute heart failure is related to poor clinical outcome. The underlying mechanisms and pathophysiology behind diuretic resistance are incompletely understood. We evaluated a combined approach using clinical characteristics and biomarkers to predict diuretic response in acute heart failure (AHF). Methods and results: We investigated explanatory and predictive models for diuretic response—weight loss at day 4 per 40 mg of furosemide—in 974 patients with AHF included in the PROTECT trial. Biomarkers, addressing multiple pathophysiological pathways, were determined at baseline and after 24 h. An explanatory baseline biomarker model of a poor diuretic response included low potassium, chloride, hemoglobin, myeloperoxidase, and high blood urea nitrogen, albumin, triglycerides, ST2 and neutrophil gelatinase-associated lipocalin (r2 = 0.086). Diuretic response after 24 h (early diuretic response) was a strong predictor of diuretic response (ÎČ = 0.467, P < 0.001; r2 = 0.523). Addition of diuretic response after 24 h to biomarkers and clinical characteristics significantly improved the predictive model (r2 = 0.586, P < 0.001). Conclusions: Biomarkers indicate that diuretic unresponsiveness is associated with an atherosclerotic profile with abnormal renal function and electrolytes. However, predicting diuretic response is difficult and biomarkers have limited additive value. Patients at risk of poor diuretic response can be identified by measuring early diuretic response after 24 h

    Impact of an interatrial shunt device on survival and heart failure hospitalization in patients with preserved ejection fraction

    Get PDF
    Aims: Impaired left ventricular diastolic function leading to elevated left atrial pressures, particularly during exertion, is a key driver of symptoms and outcomes in heart failure with preserved ejection fraction (HFpEF). Insertion of an interatrial shunt device (IASD) to reduce left atrial pressure in HFpEF has been shown to be associated with short‐term haemodynamic and symptomatic benefit. We aimed to investigate the potential effects of IASD placement on HFpEF survival and heart failure hospitalization (HFH). Methods and results: Heart failure with preserved ejection fraction patients participating in the Reduce Elevated Left Atrial Pressure in Patients with Heart Failure study (Corvia Medical) of an IASD were followed for a median duration of 739 days. The theoretical impact of IASD implantation on HFpEF mortality was investigated by comparing the observed survival of the study cohort with the survival predicted from baseline data using the Meta‐analysis Global Group in Chronic Heart Failure heart failure risk survival score. Baseline and post‐IASD implant parameters associated with HFH were also investigated. Based upon the individual baseline demographic and cardiovascular profile of the study cohort, the Meta‐analysis Global Group in Chronic Heart Failure score‐predicted mortality was 10.2/100 pt years. The observed mortality rate of the IASD‐treated cohort was 3.4/100 pt years, representing a 33% lower rate (P = 0.02). By Kaplan–Meier analysis, the observed survival in IASD patients was greater than predicted (P = 0.014). Baseline parameters were not predictive of future HFH events; however, poorer exercise tolerance and a higher workload‐corrected exercise pulmonary capillary wedge pressure at the 6 months post‐IASD study were associated with HFH. Conclusions: The current study suggests IASD implantation may be associated with a reduction in mortality in HFpEF. Large‐scale ongoing randomized studies are required to confirm the potential benefit of this therapy

    Serum potassium levels and outcome in acute heart failure (data from the PROTECT and COACH trials)

    Get PDF
    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium (<3.5 mEq/l), normal potassium (3.5 to 5.0 mEq/l), and high potassium (>5.0 mEq/l) levels. Results were verified in a validation cohort of 1,023 patients. Mean age of patients was 71 – 11 years, and 66% were men. Low potassium was present in 115 patients (6%), normal potassium in 1,576 (84%), and high potassium in 176 (9%). Potassium levels increased during hospitalization (0.18 – 0.69 mEq/l). Patients with high potassium more often used angiotensin-converting enzyme inhibitors and mineralocorticoid receptor antagonists before admission, had impaired baseline renal function and a better diuretic response (p [ 0.005), independent of mineralocorticoid receptor antagonist usage. During 180-day follow-up, a total of 330 patients (18%) died. Potassium levels at admission showed a univariate linear association with mortality (hazard ratio [log] 2.36, 95% confidence interval 1.07 to 5.23; p [ 0.034) but not after multivariate adjustment. Changes of potassium levels during hospitalization or potassium levels at discharge were not associated with outcome after multivariate analysis. Results in the validation cohort were similar to the index cohort. In conclusion, high potassium levels at admission are associated with an impaired renal function but a better diuretic response. Changes in potassium levels are common, and overall levels increase during hospitalization. In conclusion, potassium levels at admission or its change during hospitalization are not associated with mortality after multivariate adjustment
    • 

    corecore