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Abstract 

Aims 

It is unclear whether distinct pathophysiologic processes are present among patients with 

acute heart failure (AHF), with and without diabetes. Network analysis of biomarkers may 

identify correlative associations which reflect different pathophysiologic pathways.  

Methods and results 

We analyzed a panel of 48 circulating biomarkers measured within 24 hours of admission for 

AHF in a subset of patients enrolled in the PROTECT trial. In patients with and without 

diabetes, we performed a network analysis to identify correlations between measured 

biomarkers. Compared to patients without diabetes (n=1111), those with diabetes (n=922) 

had higher prevalence of ischemic heart disease and traditional coronary risk factors. Patients 

with and without diabetes, after multivariable adjustment, had significantly different levels of 

biomarkers across a spectrum of pathophysiologic domains including inflammation (TNF-1a, 

periostin), cardiomyocytes stretch (BNP), angiogenesis (VEGFR, angiogenin), and renal 

function (NGAL, KIM-1) (adjusted p-value <0.05). Among patients with diabetes, network 

analysis revealed that periostin strongly clustered with C-reactive protein and interleukin-6. 

Furthermore, renal markers (creatinine and NGAL) closely associated with potassium and 

glucose. These findings were not seen among patients without diabetes 

Conclusion 

Patients with AHF and diabetes, compared to those without diabetes, have distinct biomarker 

profiles. Network analysis suggests that cardiac remodeling, inflammation, and fibrosis are 

closely associated with each other in patients with diabetes; Furthermore, potassium levels 

may be sensitive to changes in renal function as reflected by the strong renal-potassium-



glucose correlation. These findings were not seen among patients without diabetes and may 

suggest distinct pathophysiologic processes among patients with diabetes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction  
 
The prevalence of diabetes mellitus in the general population is 4-7%1, and 32-44% in 

patients hospitalized for acute heart failure (AHF).2-5 Different underlying pathophysiologic 

processes including inflammation and fibrosis may be present among patients with diabetes 

compared to those without diabetes.6,7 These differences in pathophysiology may also be 

seen between patients with and without diabetes who have HF8-9; however, evidence to 

support this is limited. Network analysis is an analytic technique used to gain insights into a 

biological system by predicting how multiple genes or proteins associate together. This 

analytic technique has been extensively used in aging and cancer studies10-11 to gain greater 

insights into underlying disease mechanisms. Network analyses of blood biomarkers have 

been previously used to explore pathophysiologic mechanisms in HF.12,13 Using network 

analysis, we can explore whether the underlying pathophysiologic mechanisms among 

patients with and without diabetes are different in the setting of AHF. Traditionally, individual 

biomarkers would be correlated to clinical characteristics and outcomes in an attempt to gain 

an understanding of a disease; however, multiple mechanisms are likely active among 

patients with AHF.14 Network analysis allows for multiple biomarkers - across a spectrum of 

pathophysiologic domains - to be assessed for correlations simultaneously, leading to greater 

insights into the pathophysiology of disease states. Using an extensive set of biomarkers 

measured in patients with and without diabetes admitted for AHF, this study aimed to 

evaluate (1) the differences in biomarker levels and (2) the patterns of inter-biomarkers 

correlations using network analysis. 

Methods 

Study design and procedures 

The Placebo-controlled Randomized Study of the Selective A1 Adenosine Receptor 



Antagonist Rolofylline for Patients Hospitalized with AHF and Volume Overload to Assess 

Treatment Effect on Congestion and Renal FuncTion (PROTECT) trial, a multicenter, 

randomized, double-blind, placebo-controlled trial with neutral results, enrolled 2033 adult 

patients hospitalized for AHF.15 The main results of the study have been published 

previously.15,16 Key inclusion criteria included; persistent dyspnea at rest or with minimal 

activity, impaired renal function (an estimated creatinine clearance of 20 to 80 ml per minute 

with the use of the Cockcroft−Gault equation), a brain natriuretic peptide (BNP) level of 500 

pg per milliliter or more or an N-terminal pro-brain natriuretic peptide (NT-proBNP) level of 

2000 pg per milliliter or more, ongoing intravenous loop-diuretic therapy, and enrollment 

within 24 hours after admission. All patients provided informed consent for the study including 

assessment of biomarker. The study was conducted in compliance with the Declaration of 

Helsinki and was approved by all local Ethics Committees. 

All routine laboratory values were assessed daily until discharge or day 6 (or discharge if 

earlier), and on days 7 and 14, as specified by the main study protocol. Additional biomarkers 

used in the present analysis were measured during baseline assessment. Full details of the 

biomarkers are described elsewhere.17 Briefly, a panel of novel and established biomarkers 

were measured by Alere Inc., San Diego, CA, USA in available frozen serum samples 

collected from each patient during baseline assessment. Galectin-3, Myeloperoxidase (MPO) 

and Neutrophil gelatinase-associated lipocalin (NGAL) were measured using sandwich 

enzyme-linked immunosorbent assays (ELISA) on a microtiter plate; Angiogenin and C-

reactive protein (CRP) were measured using competitive ELISAs on a Luminex® platform; D-

dimer, endothelial cell-selective adhesion molecule (ESAM), growth differentiation factor 15 

(GDF-15), lymphotoxin beta receptor (LTBR), Mesothelin, Neuropilin, N-terminal pro C-type 

natriuretic peptide (NT-proCNP), Osteopontin, procalcitonin (PCT), Pentraxin-3, Periostin, 



Polymeric immunoglobulin receptor (PIGR), pro-adrenomedullin (proADM), prosaposin B 

(PSAP-B), Receptor for Advanced Glycation Endproducts (RAGE), soluble ST2, Syndecan-1, 

tumor necrosis factor alpha receptor 1 (TNF-R1a), Tumor necrosis factor receptor superfamily 

(TROY), vascular endothelial growth receptor 1(VEGFR1) and WAP Four-Disulphide Core 

Domain Protein HE4 (WAP4C) were measured using sandwich ELISAs on a Luminex® 

platform. Immunoassays for PCT, proADM, Galectin-3 and ST2 were developed by Alere. 

These research assays have not been standardized to the commercialized assays used in 

research or in clinical use and the extent to which each Alere assay correlates with the 

commercial assay is not fully characterized. Four additional biomarkers including Interleukin-

6, Endothelin-1, Kidney injury marker -1 (KIM1), cardiac Troponin-I, and BNP were measured 

using a high sensitive single molecule counting (SMC™) technology (RUO, Erenna® 

Immunoassay System, Singulex Inc., Alameda, CA, USA). Glomerular filtration rate (GFR) 

was estimated using the simplified MDRD equation. Biomarker details are presented in 

supplementary appendix table 1. In addition to these biomarker, we used baseline sodium, 

potassium, chloride, creatinine, urea, uric acid, total cholesterol, triglycerides, red blood cell 

count, hematocrit, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in 

our network analyses. Approximately 250 microL of EDTA plasma was used to measure the 

48 biomarkers. As this was a hypothesis generating analysis, we used all available 

biomarkers and routinely measured clinically biomarkers in our analysis 

 

Study population  

The primary study population comprised of 922 patients with diabetes and 1111 without 

diabetes. Biomarker data was available for 808 heart failure patients with DM and for 970 

heart failure patients without diabetes. Baseline data on patients with and without biomarkers 



have been previously reported.17 The definition of diabetes was ascertained through the 

electronic case report form and was based on patient reported history of diabetes and use of 

anti-diabetic drugs. Data on the type of diabetes (i.e. type 1 vs. type 2) or the degree of 

glycemic control (through HbA1c) were not collected. 

Statistical analyses 

Continuous variables are presented as mean ± standard deviation or median (interquartile 

range) for normally and non-normally distributed values respectively. Student’s t-tests and 

Wilcoxon tests were used to compare groups, as appropriate. A two-sided P-value < 0.05 was 

considered statistically significant. To assess for significant differences in biomarker levels 

after adjustment for co-morbidities and medication use in patients with and without diabetes, 

we conducted a multivariable linear regression analysis in which each biomarker was entered 

as a dependent variable and diabetes and potential confounders (age, sex, ischemic heart 

disease, peripheral vascular disease, estimated glomerular filtration rate, and angiotensin 

converting enzyme inhibitor [ACEi]/angiotensin receptor blocker [ARB] use) were included as 

independent variables. Principal component analysis (PCA) was performed to correct for 

multiple comparisons using biomarker measurements from AHF patients with and without 

diabetes as categorical variables.11,12,13 The use of PCA is often used in -omics based studies, 

where there is a natural correlation between markers reflective of the similar underlying 

pathophysiological processes18 and PCA based correction for multiple comparisons has been 

suggested to be more effective than Bonferroni correction18,19. PCA has been previously 

successfully used in correcting for multiple comparisons in pairwise correlations in other 

disease states.11 A total of 37 principle components cumulatively explained > 95% of the 

variation observed in the dataset when comparing both groups. The corrected significance 

level for multiple testing was thus set at P < 0.05/37, equating to an adjusted p-value cut-off of 



0.001351. Next, a Spearman's rank correlation coefficient was calculated for each possible 

biomarker pair in the cohort of patients with diabetes and the procedure was repeated for 

patients without diabetes. This resulted in two sets of R values with associated p-values for 

both groups. To adjust for multiple testing, only those correlations passing the adjusted p-

value cut-off calculated from the PCA were deemed statistically significant and subsequently 

retained. These significant correlation coefficients were then graphically displayed as 

heatmaps to reveal how biomarkers within patients with diabetes and non-diabetes clustered 

together. Network analyses were then performed to analyze the cumulative associations 

between biomarkers in patients with and without DM. To better position the global 

associations of these biomarker interactions, biomarker data together with statistical data 

pertaining to each group of patients were utilized in a network analysis. Results of network 

analysis derived from patients with and without diabetes are shown in figures 2 and 3 

respectively. The network analysis graphically represents two major findings: (1) whether 

biomarkers are correlated (i.e. how closely the levels of two biomarker levels rise and fall). 

The strength of each biomarker-biomarker correlations is graphically represented by the 

thickness of the line connecting the biomarkers; (2) how biomarkers correlate (i.e. how closely 

the levels of biomarkers correlate with multiple neighboring biomarkers). How closely a 

biomarker clusters with its neighbor is graphically represented by the size of the circle (or 

hub). We also assessed the correlation between individual biomarkers and routine clinical 

variables including height, weight, blood pressure, respiratory rate, pulse, and LVEF. The 

correlation coefficients were plotted as a correlogram.  

Statistical analyses were performed using the STATA (version 11.0, STATA Corp, College 

Station, TX, USA), R (version 2.15.1, R Foundation for Statistical Computing, Vienna, Austria) 

software, and SPSS (IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Cor).  



Results  

Baseline demographic and clinical characteristics 

Compared to patients without diabetes, those with diabetes had higher prevalence of 

ischemic heart disease, previous coronary intervention, renal dysfunction, body mass index, 

and other traditional coronary risk factors (table 1).  

Biomarker expression 

Patients with diabetes had consistently higher levels of inflammatory biomarkers compared to 

patients without DM, which included PIGR, RAGE, TNFR1A, GDF-15, WAP4c (figure 1, table 

2). The remodeling specific biomarkers (syndecan-1 and GAL-3), atherosclerosis markers 

(LTBR), lipids (triglycerides, total cholesterol) and renal markers (creatinine, BUN, NGAL, 

KIM1) were significantly higher in patients with diabetes compared to those without diabetes. 

The remodeling marker periostin, cardiomyocyte stretch marker BNP and thrombosis marker 

D-Dimer were higher in patients without diabetes compared to patients with diabetes. After 

adjustment for age, sex, clinical covariates, and ACEi/ARB use, pentraxin-3, TNFR-1a, D-

dimer, periostin, BNP, VEGFR, angiogenin, LTBR, NGAL, and KIM-1 were significantly 

different between patients with and without diabetes (adjusted p-value <0.05; supplementary 

appendix table 2).  

Biomarker correlation with network analysis 

Statistically significant biomarker correlations that survived multiple testing within the diabetes 

and non-diabetes groups are depicted as heatmaps (supplementary appendix figures 1 and 2 

respectively, and supplementary appendix table 3 and 4 respectively). The strongest inter-

biomarker correlation observed in patients with diabetes involved the association between 

glucose and triglycerides (figure 2, supplementary appendix table 3). Furthermore, a renal-

potassium-glucose correlation emerged among patients with diabetes; potassium was 



strongly correlated with glucose, creatinine, and NGAL(figure 2). Periostin had the largest hub, 

suggesting that this biomarker strongly clusters around the neighboring inflammatory 

biomarkers CRP and IL6. Among patients without diabetes, these associations were not seen 

(figure 3); however, BUN is strongly correlated with troponin and BNP associates with AST. 

Furthermore, among patients without diabetes, the angiogenesis marker angiogenin 

appeared to strongly cluster with BUN and another angiogenesis marker (TROY). Periostin 

does not appear to significantly associate or cluster with other biomarkers among patients 

without diabetes. 

Among the association between biomarkers and clinical variables, the most significant 

correlations occurred with LVEF and the biomarkers. Among patients with diabetes, LVEF 

was strongly associated with d-dimer, RAGE, and IL6. Among patients without diabetes, the 

strongest clinical and biomarkers correlations were seen with LVEF and d-dimer, NT-proCNP, 

and BNP (supplementary figure 3 and 4). 

 

Discussion 

To our knowledge this is the first network analysis to identify correlations and clusters of 

associations using an extensive panel of biomarkers in patients with and without diabetes in 

AHF. The two main findings of the present study were: (1) There are significant differences in 

biomarker levels across a domain of pathophysiologic processes among patient with and 

without diabetes in AHF; (2) cardiac remodeling-fibrosis-inflammation biomarkers strongly 

cluster closely among patients with DM - a finding not seen among patients without diabetes; 

(3) a renal-potassium-glucose correlation of potassium, glucose, creatinine, NGAL, and 

galectin-3 was seen among patients with diabetes. These results suggest that in the setting of 

AHF, distinct pathophysiologic processes are likely to be present among patients with 



diabetes compared to those without DM. 

 

Differences in biomarker profiles 

The association of diabetes, renal disease, inflammation in humans has been described.6,7 

Our results expand on these findings by demonstrating that even after multivariable 

adjustment the inflammatory marker TNF-R1a and renal markers (KIM1,  NGAL) were 

significantly higher in patients with diabetes compared to those without diabetes. Periostin 

was significantly lower in patients with diabetes even after multivariable adjustment. Periostin 

knockout models are associated with increased cardiac and valvular fibrosis.20 Treatment with 

periostin in cardiac infarction models results in improvement in cardiac contractility and 

ventricular remodelling.21 Lower periostin level may suggest a reduced ability to undergo 

adaptive ventricular remodelling among patients with diabetes compared to patients without 

diabetes. In prior rat studies of diabetic cardiomyopathy, myocardial expression of periostin 

was higher.22 The finding of lower periostin in our study may reflect differences in location of 

periostin measurement (serum versus myocardium) or clinical state (acute versus chronic HF). 

Overall, the significant differences in biomarker levels across a range of pathophysiologic 

pathways provides empiric clues that different disease mechanisms may be present in 

patients with and without diabetes and AHF.   

 

Our analysis revealed a higher BNP among patients without diabetes even after multivariable 

adjustment. While some reports have suggested a higher BNP associated with diabetes23, 

other large population studies and clinical trials have demonstrated lower BNP levels among 

patients with diabetes and HF3,4. The lower BNP seen among patients with diabetes and HF 

likely reflects the higher incidence of obesity, which is known to associate with lower 

natriuretic peptide levels24. 



 

 

Correlation and clustering of biomarkers 

Another important finding of the present study was that periostin clustered around established 

markers of fibrosis and inflammation (CRP and IL6) in patients with diabetes. Our results 

extend upon work from existing experimental models. In diabetic rats, compared to controls, 

periostin is closely associated with ventricular fibrosis and adverse cardiac remodeling.22 The 

use of valsartan in diabetic rats significantly improved ventricular remodelling and markers of 

fibrosis by possibly targeting the periostin-pathway22. Our findings suggest that in patients 

with AHF, the mechanisms of cardiac remodelling, fibrosis, and inflammation, are closely 

related; these findings were not observed in patients without diabetes. Such analyses of blood 

biomarkers have been used to examine the pathophysiologic mechanisms in patients with 

AHF12 and among patients HF with reduced and preserved ejection fraction.13 Il-6 and CRP 

levels are similar among patients with and without diabetes reflecting the acute inflammation 

seen in AHF. However, in patients with diabetes, periostin associates with inflammatory 

proteins Il-6 and CRP; while further evaluation is needed, these results may reflect a possible 

mechanistic link between periostin and acute inflammation. Periostin did not cluster around 

other inflammatory markers that were elevated among patients with diabetes including RAGE 

and GDF-15. While all of these biomarkers act through the inflammatory cascade in some 

capacity, their different mechanisms of action are likely reflected in the lack of clustering seen 

between these proteins7,21. The role of the periostin-pathway and inflammation among 

patients with diabetes and HF warrants further evaluation.21,25 

In addition to the periostin clustering, a renal-potassium-glucose correlation was present 

among patients with diabetes. These result suggests that potassium levels among patients 



with diabetes are more sensitive to changes in renal function. One potential explanation may 

relate to baseline medications; however, patients with diabetes were only slightly more likely 

to be on ACE-i/ARB compared to patients without diabetes (78% vs. 74%; p=0.03; table 1) 

and were equally likely to be on mineralocorticoid receptor antagonists (42% vs. 46%; p=0.1; 

table 1). A history of diabetes has been shown to be an independent predictor of 

hyperkalemia among patients with and without HF26. Our results extend on prior analyses 

suggesting that among patients with diabetes, potassium and glucose levels are correlated 

through insulin mediated regulation, and this correlation is significantly influenced by insulin-

resistance and kidney disease27. Our findings have clinical implications; hyperkalemia among 

patients with AHF may portend a worse prognosis,26 clinicians need to aggressively monitor 

renal function and optimize potassium levels among patients with diabetes.   

Among patients without diabetes, a cardiac stretch-hepatic relationship was seen as BNP 

correlated strongly with AST. Abnormal liver enzymes in patients admitted with AHF are 

correlated with worse prognosis28; our results suggest that changes in liver enzymes among 

patients with diabetes may be more sensitive to volume status and changes in cardiomyocyte 

stretch as reflected by BNP.  

The network analysis results were further supported by the association of biomarkers and 

clinical data. The inflammatory molecules RAGE and IL6 were the most strongly correlated 

with LVEF in patients with diabetes while NT-proCNP and BNP were the most strongly 

correlated with LVEF in patients without diabetes. These results suggest that inflammation 

and oxidation may be a dominant contributor to myocardial function among diabetics in AHF, 

while cardiomyocyte stretch may be a major contributor to myocardial function among 

patients without diabetes. 



Clinical implications and future direction 

Our results suggest that among patients with and without diabetes in AHF different underlying 

mechanisms of disease may exist. Periostin may be playing a central role in the pathogenesis 

of HF among patients with DM, and therapies targeting the periostin-pathway may represent a 

novel treatment strategy.21,22,25 Therapies that modulate the periostin-pathway are being 

explored in cardiac models of heart failure and myocardial infarction.29 Valsartan has 

demonstrated improvements in ventricular remodeling in diabetic rats potentially through the 

periostin-pathway.22 It is unclear whether angiotensin converting enzyme inhibitors (ACEi) 

targets the periostin-pathway. While there are no direct head to head comparison of ACEi and 

angiotension receptor blockers (ARB) in patients with diabetes and HF, comparative analyses 

have suggested that ARBs may be superior than ACEi in the setting of diabetic 

nephropathy.30 Studies evaluating strategies that target the periostin-pathway, with ARBs or 

other therapies, may represent a future direction of research among patients with diabetes 

and HF. In addition to cardiac disease, periostin plays a significant role in the mineralization of  

bone extracellular matrix31 which has significant implications for osteoporosis development 

among patients with diabetes32. Further evaluation of Bone Morphogenetic Protein -1 (BMP-1) 

and lysyl oxidase (LOX) activity, which are associated with periostin function, would be 

required to clarify the role of the periostin-pathway in patients with diabetes and HF.31 

Furthermore, given the renal-potassium-glucose correlation seen in our analysis, strategies to 

optimize potassium may represent a strategy to improve outcomes among patients with 

diabetes and will need to be evaluated in prospective studies. 

Strengths and Limitations 

This study is affected by the limitations of post hoc analyses, necessitating cautious 

interpretation. PROTECT had no specific design to warrant sufficient power for analyses of 



the diabetic subgroup. Information on anti-inflammatory medications was also not available. In 

addition, while patient medications may potentially affect biomarker levels, we did not 

adjusted for this given the more descriptive nature of this analysis. In our study, we have used 

network analysis as a way to determine the underlying pathophysiologic mechanisms and this 

method has been utilized in a variety of other analysis.11,12,13 While co-morbidities and 

medications differed among patients with and without diabetes, these were not adjusted for in 

the clustering analysis as the intent of our analysis was to reflect the overall subgroups of 

patients with and without diabetes. Type of diabetes (i.e. type 1 vs. type 2), degree of 

glycemic control (through HbA1c), or duration of diabetes may potentially influence our results 

but were not collected in the PROTECT trial. Our findings are predominantly hypothesis 

generating; however, the conservative p-values used in our principle component analysis 

ensures a statistically more robust result. 

 

Conclusion 

Using network analyses, among AHF patients with and without and diabetes, our findings 

suggest that cardiac remodeling, inflammation, and fibrosis - as reflected by the clustering of 

periostin, CRP, and IL6 - are closely associated among patients with diabetes. Furthermore, 

renal function, potassium levels, and glucose are closely correlated among patients with 

diabetes. These findings were not seen in patients without diabetes. Our study suggests that 

different pathophysiology pathways may be active among patients with and without DM and 

AHF. Further research will be needed to explore these results.  
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Figure Legends: 

Figure 1: Percentage difference in baseline biomarker levels between patients with and 
without diabetes mellitus admitted with acute heart failure. 
 

% change calculated by subtracting the median value of the baseline biomarker in patients 
with diabetes mellitus from the median value of the baseline biomarker in patients without 
diabetes mellitus and dividing the results by the median value of the biomarker with diabetics. 
*denotes statistically significant levels between diabetic and non-diabetic levels (P < 0.05) 
 
 
Abbreviations: ALT alanine aminotransferase; AST aspartate aminotransferase; BUN blood 
urea nitrogen; BNP: B-type Natriuretic Peptide; CRP C-reactive protein; GDF-15 growth 
differentiation factor 15; PCT procalcitonin; PIGR Polymeric immunoglobulin receptor; PSAP-
B Prosaposin B; RAGE Receptor for advanced glycation end product; RBC red blood cell; 
WAP4C WAP Four-Disulphide Core Domain Protein HE4; WBC white blood cells; TNF-R1a 
tumor necrosis factor alpha receptor 1; ST2 Soluble ST2; VEGFR vascular endothelial growth 
receptor; proADM pro-adrenomedullin; NT-proCN: N-terminal pro-C-type natriuretic peptide; 
LTBR lymphotoxin beta receptor; ESAM endothelial cell-selective adhesion molecule; NGAL 
neutrophil Gelatinase-associated Lipocalin; ET1 endothelin-1; IL6 interlukin-6; KIM1 kidney 
injury molecule 1. 
 
Figure 2: Network analysis  between biomarkers in patients with acute heart failure and 

diabetes mellitus 

Biomarkers are represented as circular hubs, with associations depicted as connecting lines. 
The thickness of the line is directly proportional to the strength of the correlation and the size 
of the hub reflects the clustering coefficient (additive correlations of neighboring pairs of 
biomarker associations). The color of the circular hubs (biomarkers) and lines (associations) 
represent the strength of the clustering coefficient and strength of inter-biomarker correlations 
respectively; these range from blue; strongest, to orange; weakest. Of all statistically 
significant associations depicted, glucose and triglycerides are the most strongly correlated 
with each other, reflected by the thickness of the line. Periostin has the largest hub, reflecting 
strong additive correlations with CRP and IL6.  
 
Figure 3: Network analysis between biomarkers in patients with acute heart failure and 

without diabetes mellitus 



Biomarkers are represented as circular hubs, with associations depicted as connecting lines. 
The thickness of the line is directly proportional to the strength of the correlation and the size 
of the hub reflects the clustering coefficient (additive correlations of neighboring pairs of 
biomarker associations). The color of the circular hubs (biomarkers) and lines (associations) 
represent the strength of the clustering coefficient and strength of inter-biomarker correlations 
respectively; these range from blue; strongest, to orange; weakest. While no one dominant 
association was seen, the strongest correlation appears to be with AST and BNP. Angiogenin 
has the largest hub, reflecting strong additive correlation with BUN and TROY.” 
 


