151 research outputs found
Supersonic Downflows in a Sunspot Light Bridge
We report the discovery of supersonic downflows in a sunspot light bridge
using measurements taken with the spectropolarimeter on board the Hinode
satellite. The downflows occur in small patches close to regions where the
vector magnetic field changes orientation rapidly, and are associated with
anomalous circular polarization profiles. An inversion of the observed Stokes
spectra reveals velocities of up to 10 km/s, making them the strongest
photospheric flows ever measured in light bridges. Some (but not all) of the
downflowing patches are cospatial and cotemporal with brightness enhancements
in chromospheric Ca II H filtergrams. We suggest that these flows are due to
magnetic reconnection in the upper photosphere/lower chromosphere, although
other mechanisms cannot be ruled out.Comment: 4 pages, 5 figures, Published in ApJ Letter
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
We present results of non-linear, 2D, numerical simulations of
magneto-acoustic wave propagation in the photosphere and chromosphere of
small-scale flux tubes with internal structure. Waves with realistic periods of
three to five minutes are studied, after applying horizontal and vertical
oscillatory perturbations to the equilibrium model. Spurious reflections of
shock waves from the upper boundary are minimized thanks to a special boundary
condition. This has allowed us to increase the duration of the simulations and
to make it long enough to perform a statistical analysis of oscillations. The
simulations show that deep horizontal motions of the flux tube generate a slow
(magnetic) mode and a surface mode. These modes are efficiently transformed
into a slow (acoustic) mode in the vA < cS atmosphere. The slow (acoustic) mode
propagates vertically along the field lines, forms shocks and remains always
within the flux tube. It might deposit effectively the energy of the driver
into the chromosphere. When the driver oscillates with a high frequency, above
the cut-off, non-linear wave propagation occurs with the same dominant driver
period at all heights. At low frequencies, below the cut-off, the dominant
period of oscillations changes with height from that of the driver in the
photosphere to its first harmonic (half period) in the chromosphere. Depending
on the period and on the type of the driver, different shock patterns are
observed.Comment: 22 pages 6 color figures, submitted to Solar Physics, proceeding of
SOHO 19/ GONG 2007 meeting, Melbourne, Australi
Navigation system for robot-assisted intra-articular lower-limb fracture surgery
Purpose
In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction.
Methods
3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon’s virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system.
Results
The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of 0.95±0.3mm (translational) and 1.4∘±0.5∘ (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and 1.56∘±0.1∘, when the robot reduced the fracture.
Conclusions
Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and 1.5∘, and meeting the clinical requirements for distal femur fracture reduction procedures
External fixation compared to intramedullary nailing of tibial fractures in the rat
Background and purpose It is not known whether there is a difference in bone healing after external fixation and after intramedullary nailing. We therefore compared fracture healing in rats after these two procedures
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures
Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries
Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery
Purpose
Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS’s navigation system overcoming the earlier version’s issues, aiming to move the RAFS system into a surgical environment.
Methods
The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance.
Results
Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about 0.88 ±0.2mm
(phantom) and 1.15±0.8mm (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error 1.2±0.3mm, 2±1∘).
Conclusion
Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application
Advantages of the Ilizarov external fixation in the management of intra-articular fractures of the distal tibia
<p>Abstract</p> <p>Background</p> <p>Treatment of distal tibial intra-articular fractures is challenging due to the difficulties in achieving anatomical reduction of the articular surface and the instability which may occur due to ligamentous and soft tissue injury. The purpose of this study is to present an algorithm in the application of external fixation in the management of intra-articular fractures of the distal tibia either from axial compression or from torsional forces.</p> <p>Materials and methods</p> <p>Thirty two patients with intra-articular fractures of the distal tibia have been studied. Based on the mechanism of injury they were divided into two groups. Group I includes 17 fractures due to axial compression and group II 15 fractures due to torsional force. An Ilizarov external fixation was used in 15 patients (11 of group I and 4 of group II). In 17 cases (6 of group I and 11 of group II) a unilateral hinged external fixator was used. In 7 out of 17 fractures of group I an additional fixation of the fibula was performed.</p> <p>Results</p> <p>All fractures were healed. The mean time of removal of the external fixator was 11 weeks for group I and 10 weeks for group II. In group I, 5 patients had radiological osteoarthritic lesions (grade III and IV) but only 2 were symptomatic. Delayed union occurred in 3 patients of group I with fixed fibula. Other complications included one patient of group II with subluxation of the ankle joint after removal of the hinged external fixator, in 2 patients reduction found to be insufficient during the postoperative follow up and were revised and 6 patients had a residual pain. The range of ankle joint motion was larger in group II.</p> <p>Conclusion</p> <p>Intra-articular fractures of the distal tibia due to axial compression are usually complicated with cartilaginous problems and are requiring anatomical reduction of the articular surface. Fractures due to torsional forces are complicated with ankle instability and reduction should be augmented with ligament repair, in order to restore normal movement of talus against the mortise. Both Ilizarov and hinged external fixators are unable to restore ligamentous stability. External fixation is recommended only for fractures of the ankle joint caused by axial compression because it is biomechanically superior and has a lower complication rate.</p
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
The association between hip fracture and hip osteoarthritis: A case-control study
<p>Abstract</p> <p>Background</p> <p>There have been reports both supporting and refuting an inverse relationship between hip fracture and hip osteoarthritis (OA). We explore this relationship using a case-control study design.</p> <p>Methods</p> <p>Exclusion criteria were previous hip fracture (same side or contralateral side), age younger than 60 years, foreign nationality, pathological fracture, rheumatoid arthritis and cases were radiographic examinations were not found in the archives. We studied all subjects with hip fracture that remained after the exclusion process that were treated at Akureyri University Hospital, Iceland 1990-2008, n = 562 (74% women). Hip fracture cases were compared with a cohort of subjects with colon radiographs, n = 803 (54% women) to determine expected population prevalence of hip OA. Presence of radiographic hip OA was defined as a minimum joint space of 2.5 mm or less on an anteroposterior radiograph, or Kellgren and Lawrence grade 2 or higher. Possible causes of secondary osteoporosis were identified by review of medical records.</p> <p>Results</p> <p>The age-adjusted odds ratio (OR) for subjects with hip fracture having radiographic hip OA was 0.30 (95% confidence interval [95% CI] 0.12-0.74) for men and 0.33 (95% CI 0.19-0.58) for women, compared to controls. The probability for subjects with hip fracture and hip OA having a secondary cause of osteoporosis was three times higher than for subjects with hip fracture without hip OA.</p> <p>Conclusion</p> <p>The results of our study support an inverse relationship between hip fractures and hip OA.</p
- …