33 research outputs found

    A versatile palindromic amphipathic repeat coding sequence horizontally distributed among diverse bacterial and eucaryotic microbes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intragenic tandem repeats occur throughout all domains of life and impart functional and structural variability to diverse translation products. Repeat proteins confer distinctive surface phenotypes to many unicellular organisms, including those with minimal genomes such as the wall-less bacterial monoderms, <it>Mollicutes</it>. One such repeat pattern in this clade is distributed in a manner suggesting its exchange by horizontal gene transfer (HGT). Expanding genome sequence databases reveal the pattern in a widening range of bacteria, and recently among eucaryotic microbes. We examined the genomic flux and consequences of the motif by determining its distribution, predicted structural features and association with membrane-targeted proteins.</p> <p>Results</p> <p>Using a refined hidden Markov model, we document a 25-residue protein sequence motif tandemly arrayed in variable-number repeats in ORFs lacking assigned functions. It appears sporadically in unicellular microbes from disparate bacterial and eucaryotic clades, representing diverse lifestyles and ecological niches that include host parasitic, marine and extreme environments. Tracts of the repeats predict a malleable configuration of recurring domains, with conserved hydrophobic residues forming an amphipathic secondary structure in which hydrophilic residues endow extensive sequence variation. Many ORFs with these domains also have membrane-targeting sequences that predict assorted topologies; others may comprise reservoirs of sequence variants. We demonstrate expressed variants among surface lipoproteins that distinguish closely related animal pathogens belonging to a subgroup of the <it>Mollicutes</it>. DNA sequences encoding the tandem domains display dyad symmetry. Moreover, in some taxa the domains occur in ORFs selectively associated with mobile elements. These features, a punctate phylogenetic distribution, and different patterns of dispersal in genomes of related taxa, suggest that the repeat may be disseminated by HGT and intra-genomic shuffling.</p> <p>Conclusions</p> <p>We describe novel features of PARCELs (<b>P</b>alindromic <b>A</b>mphipathic <b>R</b>epeat <b>C</b>oding <b>EL</b>ements), a set of widely distributed repeat protein domains and coding sequences that were likely acquired through HGT by diverse unicellular microbes, further mobilized and diversified within genomes, and co-opted for expression in the membrane proteome of some taxa. Disseminated by multiple gene-centric vehicles, ORFs harboring these elements enhance accessory gene pools as part of the "mobilome" connecting genomes of various clades, in taxa sharing common niches.</p

    Talking about smoking cessation with post-natal women: Exploring midwives’ experiences

    Get PDF
    This study explored midwives’ experiences of talking to post-natal women about smoking cessation. Face-to-face semi structured interviews were held with seven midwives based in the UK. Thematic analysis identified themes which provided understanding as to factors determining discussion of smoking cessation. Six themes were identified which were Post-natal Women Factors, Midwife Factors, Providing Information, Involving Others, Priorities, and Whole Family Approach. Implications for midwives working with post-natal women are discussed, including the need to increase the involvement of other healthcare professionals in supporting post-natal women to stop smoking

    Cholinergic white matter pathways along the Alzheimer's disease continuum

    Get PDF
    Nemy et al. investigate cholinergic white matter projections along the Alzheimer's disease continuum. They show that alterations are already present in individuals with subjective cognitive decline, preceding the more widespread alterations seen in mild cognitive impairment and Alzheimer's disease dementia. Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum fĂŒr Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert

    Enhancing methane production from lignocellulosic biomass by combined steam‑explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

    Get PDF
    Background: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/ g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/ g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. Conclusion: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass

    Serum IL-6, sAXL, and YKL-40 as systemic correlates of reduced brain structure and function in Alzheimer’s disease: results from the DELCODE study

    Get PDF
    Background Neuroinflammation constitutes a pathological hallmark of Alzheimer’s disease (AD). Still, it remains unresolved if peripheral inflammatory markers can be utilized for research purposes similar to blood-based beta-amyloid and neurodegeneration measures. We investigated experimental inflammation markers in serum and analyzed interrelations towards AD pathology features in a cohort with a focus on at-risk stages of AD. Methods Data of 74 healthy controls (HC), 99 subjective cognitive decline (SCD), 75 mild cognitive impairment (MCI), 23 AD relatives, and 38 AD subjects were obtained from the DELCODE cohort. A panel of 20 serum biomarkers was determined using immunoassays. Analyses were adjusted for age, sex, APOE status, and body mass index and included correlations between serum and CSF marker levels and AD biomarker levels. Group-wise comparisons were based on screening diagnosis and routine AD biomarker-based schematics. Structural imaging data were combined into composite scores representing Braak stage regions and related to serum biomarker levels. The Preclinical Alzheimer’s Cognitive Composite (PACC5) score was used to test for associations between the biomarkers and cognitive performance. Results Each experimental marker displayed an individual profile of interrelations to AD biomarkers, imaging, or cognition features. Serum-soluble AXL (sAXL), IL-6, and YKL-40 showed the most striking associations. Soluble AXL was significantly elevated in AD subjects with pathological CSF beta-amyloid/tau profile and negatively related to structural imaging and cognitive function. Serum IL-6 was negatively correlated to structural measures of Braak regions, without associations to corresponding IL-6 CSF levels or other AD features. Serum YKL-40 correlated most consistently to CSF AD biomarker profiles and showed the strongest negative relations to structure, but none to cognitive outcomes. Conclusions Serum sAXL, IL-6, and YKL-40 relate to different AD features, including the degree of neuropathology and cognitive functioning. This may suggest that peripheral blood signatures correspond to specific stages of the disease. As serum markers did not reflect the corresponding CSF protein levels, our data highlight the need to interpret serum inflammatory markers depending on the respective protein’s specific biology and cellular origin. These marker-specific differences will have to be considered to further define and interpret blood-based inflammatory profiles for AD research

    Dynamics of Polyphosphate-Accumulating Bacteria in Wastewater Treatment Plant Microbial Communities Detected via DAPI (4â€Č,6â€Č-Diamidino-2-Phenylindole) and Tetracycline Labeling▿ †

    No full text
    Wastewater treatment plants with enhanced biological phosphorus removal represent a state-of-the-art technology. Nevertheless, the process of phosphate removal is prone to occasional failure. One reason is the lack of knowledge about the structure and function of the bacterial communities involved. Most of the bacteria are still not cultivable, and their functions during the wastewater treatment process are therefore unknown or subject of speculation. Here, flow cytometry was used to identify bacteria capable of polyphosphate accumulation within highly diverse communities. A novel fluorescent staining technique for the quantitative detection of polyphosphate granules on the cellular level was developed. It uses the bright green fluorescence of the antibiotic tetracycline when it complexes the divalent cations acting as a countercharge in polyphosphate granules. The dynamics of cellular DNA contents and cell sizes as growth indicators were determined in parallel to detect the most active polyphosphate-accumulating individuals/subcommunities and to determine their phylogenetic affiliation upon cell sorting. Phylotypes known as polyphosphate-accumulating organisms, such as a “Candidatus Accumulibacter”-like phylotype, were found, as well as members of the genera Pseudomonas and Tetrasphaera. The new method allows fast and convenient monitoring of the growth and polyphosphate accumulation dynamics of not-yet-cultivated bacteria in wastewater bacterial communities
    corecore