19 research outputs found

    Genetic differentiation in an endangered and strongly philopatric, migrant shorebird

    Get PDF
    Background Populations living in fragmented habitats may suffer from loss of genetic variation and reduced between-patch dispersal, which are processes that can result in genetic differentiation. This occurs frequently in species with reduced mobility, whereas genetic differentiation is less common among mobile species such as migratory birds. The high dispersal capacity in the latter species usually allows for gene flow even in fragmented landscapes. However, strongly philopatric behaviour can reinforce relative isolation and the degree of genetic differentiation. The Southern Dunlin (Calidris alpina schinzii) is a philopatric, long-distance migratory shorebird and shows reduced dispersal between isolated breeding patches. The endangered population of the Southern Dunlin breeding at the Baltic Sea has suffered from habitat deterioration and fragmentation of coastal meadows. We sampled DNA across the entire population and used 12 polymorphic microsatellite loci to examine whether the environmental changes have resulted in genetic structuring and loss of variation. Results We found a pattern of isolation-by-distance across the whole Baltic population and genetic differentiation between local populations, even within the southern Baltic. Observed heterozygosity was lower than expected throughout the range and internal relatedness values were positive indicating inbreeding. Conclusions Our results provide long-term, empirical evidence for the theoretically expected links between habitat fragmentation, population subdivision, and gene flow. They also demonstrate a rare case of genetic differentiation between populations of a long-distance migratory species. The Baltic Southern Dunlin differs from many related shorebird species that show near panmixia, reflecting its philopatric life history and the reduced connectivity of its breeding patches. The results have important implications as they suggest that reduced connectivity of breeding habitats can threaten even long-distance migrants if they show strong philopatry during breeding. The Baltic Southern Dunlin warrants urgent conservation efforts that increase functional connectivity and gene flow between breeding areas.Peer reviewe

    Genetic differentiation in an endangered and strongly philopatric, migrant shorebird

    Get PDF
    Populations living in fragmented habitats may suffer from loss of genetic variation and reduced between-patch dispersal, which are processes that can result in genetic differentiation. This occurs frequently in species with reduced mobility, whereas genetic differentiation is less common among mobile species such as migratory birds. The high dispersal capacity in the latter species usually allows for gene flow even in fragmented landscapes. However, strongly philopatric behaviour can reinforce relative isolation and the degree of genetic differentiation. The Southern Dunlin (Calidris alpina schinzii) is a philopatric, long-distance migratory shorebird and shows reduced dispersal between isolated breeding patches. The endangered population of the Southern Dunlin breeding at the Baltic Sea has suffered from habitat deterioration and fragmentation of coastal meadows. We sampled DNA across the entire population and used 12 polymorphic microsatellite loci to examine whether the environmental changes have resulted in genetic structuring and loss of variation. </p

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within-and between-species diversity in incubation rhythms. Between species, the median length of one parent's incubation bout varied from 1-19 h, whereas period length-the time in which a parent's probability to incubate cycles once between its highest and lowest value-varied from 6-43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light-dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.</p

    Unexpected diversity in socially synchronized rhythms of shorebirds

    Get PDF
    The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment1, 2, 3, 4. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions1, 5, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators6, 7, 8, 9, 10. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring)6, 7, 8, 9, 11. The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood5, 6, 7, 9. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization12 where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1–19 h, whereas period length—the time in which a parent’s probability to incubate cycles once between its highest and lowest value—varied from 6–43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light–dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity5, 6, 7, 9. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms

    Phylogeography and conservation genetics of waders

    No full text
    Abstract Many waders are in decline, and the number of endangered species and populations is increasing. Their protection and management requires knowledge of both ecological and genetic state of the populations. In this thesis, I studied the distribution-wide genetic variation, structure and phylogeography of the Temminck’s Stint (Calidris temminckii) and Terek Sandpiper (Xenus cinereus) using microsatellites and sequence data from the mitochondrial control region and cytochrome oxidase I gene. I compared these regionally endangered species to other waders with varying evolutionary histories, breeding systems and habitat preferences to examine the levels of genetic variation and structure at different spatial scales. In addition, I studied the genetic structure of the endangered Baltic population of the Southern Dunlin (Calidris alpina schinzii) with microsatellites. I used genetic information in all three study species to determine units for conservation. The Temminck’s Stint and Terek Sandpiper, both not restricted to the Arctic, had low distribution-wide structuring. They also had quite low levels of variation when compared to other species breeding at similar latitudes, indicating reductions in population sizes during past climate changes. Especially the peripheral breeding populations were differentiated and showed signs of inbreeding and genetic drift when compared to the main range. The Temminck’s Stint populations at the Bothnian Bay and Yakutia, and Terek Sandpiper populations in Finland and Belarus, should be treated as separate management units. The broader interspecific comparison of waders suggests that habitat availability, mating system and the extent of philopatry may affect the genetic composition of species. The genetic analyses of the Southern Dunlin indicated strong effects of philopatry and inbreeding throughout the range. Local subpopulations at the Bothnian Bay and in Sweden need to be considered as separate management units. Management efforts at the Baltic should be focused on increasing connectivity and providing large enough breeding habitats for potential immigrants and recruits.Tiivistelmä Useat kahlaajapopulaatiot ovat pienentyneet ja uhanalaistuneet maailmanlaajuisesti. Lajien ja populaatioiden ekologiaa ja genetiikkaa on tunnettava, jotta suojelutoimia voidaan kohdistaa oikein. Tutkin väitöskirjassani lapinsirrin (Calidris temminckii) ja rantakurvin (Xenus cinereus) geneettistä rakennetta, muuntelua ja fylogeografiaa levinneisyysalueen laajuisesti mikrosatelliittien ja mitokondrion kontrollialueen ja sytokromioksidaasi I -geenin sekvenssien avulla. Tutkin, mitkä tekijät vaikuttavat geneettisen rakenteeseen ja muunteluun vertaamalla näitä lajeja muihin kahlaajiin, joilla on erilaisia lisääntymisstrategioita, jotka pesivät vaihtelevissa ympäristöissä ja joista monet eroavat toisistaan myös fylogeografialtaan. Lisäksi tutkin Itämeren rannalla pesivän etelänsuosirrin (Calidris alpina schinzii) geneettistä populaatiorakennetta mikrosatelliittien avulla. Käytin geneettistä tietoa hyväksi luonnonsuojeluyksikköjen määrittämisessä kaikille kolmelle tutkimuslajilleni. Lapinsirrin ja rantakurvin fylogeografinen historia oli samankaltainen. Geneettisen muuntelun määrä oli vähäisempää verrattuna muihin, samankaltaisissa ympäristöissä pesiviin kahlaajiin. Molemmat lajit ovat todennäköisesti kärsineet historiallisten ilmaston-muutosten aiheuttamasta populaatioiden pienenemisestä. Erityisesti levinneisyysalueen reunoilla pesivät populaatiot olivat erilaistuneita, ja niissä näkyi sukusiitoksen ja geneettisen satunnaisajautumisen merkkejä. Perämeren ja Jakutian lapinsirri- sekä Valko-Venäjän ja Suomen rantakurvipopulaatioita tulee kohdella erillisinä suojeluyksiköinään. Vertailu muihin kahlaajiin osoitti, että niin pesimä- ja talvehtimisalueiden laajuus kuin lisääntymisstrategiat ja paikkauskollisuus voivat vaikuttaa lajien geneettiseen koostumukseen. Etelänsuosirrin geneettiset analyysit paljastivat merkkejä sukusiitoksesta, joita paikkauskollisuus ja populaatioiden pienuus ovat voimistaneet. Perämeren ja Ruotsin populaatioita tulee kohdella erillisinä suojeluyksiköinään. Suojelutoimet on kohdistettava tarpeeksi suurien, hyvälaatuisten pesimäpaikkaverkostojen ylläpitämiseen

    No strong effects of leg-flagged geolocators on return rates or reproduction of a small long-distance migratory shorebird

    No full text
    Josep del Hoyo & Nigel Collar 2014: HBW and BirdLife International Illustrated Checklist of the Birds of the World. Volume 1: Non-passerines. — Lynx Edicions. 904 pp

    Striking rusty-brown neck collars in ruffs:Plumage polymorphism or staining?

    No full text
    Among Ruffs Calidris pugnax migrating through the province of Friesland in The Netherlands in spring, some individuals have a remarkably plover-like, rustybrown neck collar. In this paper we explore the frequency of occurrence of this neck collar in 2,395 Ruffs in which the presence or absence was scored in yearround catches in Friesland between 2006 and 2019. Additionally, 49 nesting reeves in northern Finland and 73 skins of females (mostly in breeding plumage) in the Moscow Zoological Museum were checked for neck collars. The rustybrown neck collar was found in 395 Ruffs migrating through The Netherlands in spring. Among birds of known sex, age and morph (n = 2,098), the collar occurred in 14% of females, in 3.5% of faeders, and in 40% of satellite and 20% of independent males. However, among males, the rate dropped to zero by late April after the start of moult of the ruff and tuft feathers, and the occurrence was lower among second-calendar-year males (11%); no age effect was detected among females. Rusty-brown neck collars were rare among breeding females, with no cases in Finland, one possible case in the museum collection and one other case observed in Medusa Bay, north-central Siberia, Russia. The collar was also rare (0.4%) in non-breeding Ruffs caught in The Netherlands between June and February. The likely cause of the neck collar is staining by ferric oxide (Fe2O3) or ferrous oxide (FeO) as collar feathers tested positive for iron, while regular brown feathers tested negative. The presence in spring, but not after moult into the supplemental plumage or later, suggests that the birds acquire the ironbased collar in the wintering areas in West Africa or at stopover sites during northward migration

    The abundance of small mammals is positively linked to survival from nest depredation but negatively linked to local recruitment of a ground nesting precocial bird

    No full text
    Abstract Generalist predators using small mammals as their primary prey are suggested to shift hunting alternative prey such as bird nests, when small mammals are in short supply (the alternative prey hypothesis, APH). Nest survival and survival of young individuals should be positively linked to small mammal abundance and negatively linked to predator abundance, but little information exists from survival of chicks, especially until recruitment. We test these predictions of the APH using 13 years (2002–2014) of life history data from a ground nesting shorebird breeding on coastal meadows. We use small mammal abundance in the previous autumn as a proxy for spring predator abundance, mainly of mammalian predators. We examine whether small mammal abundance in the spring and previous autumn explain annual variation in nest survival from depredation and local recruitment of the southern dunlin Calidris alpina schinzii. As predicted by the APH, survival from nest predation was positively linked to spring small mammal abundance and negatively linked to autumn small mammal abundance. Importantly, local recruitment showed opposite responses. This counterintuitive result may be explained by density-dependent survival. When nest depredation rates are low, predators may show stronger numerical and functional responses to high shorebird chick abundance on coastal meadows, whereas in years of high nest depredation, few hatching chicks lure fewer predators. The opposite effects on nest and local recruitment demonstrate the diverse mechanisms by which population size variation in primary prey can affect dynamics of alternative prey populations

    Survival probability in a small shorebird decreases with the time an individual carries a tracking device

    No full text
    Abstract Effects of tracking devices on survival are generally considered to be small. However, most studies to date have been conducted over a time‐period of only one year, neglecting the possible accumulation of negative effects and consequently stronger negative impacts on survival when the individuals have carried the tracking devices for longer periods. We studied the effects of geolocators in a closely monitored and colour‐ringed southern dunlin Calidris alpina schinzii population breeding in Finland. Our capture–recapture data spans 2002–2018 and includes individual histories of 338 colour‐ringed breeding adult dunlins (the term ‘recapture' includes resightings of colour‐ringed and individually recognizable birds). These data include 53 adults that were fitted with leg‐flag mounted geolocators in 2013–2014. We followed their fates together with other colour‐ringed birds not equipped with geolocators until 2018. Geolocators were removed within 1–2 years of attachment or were not removed at all, which allowed us to examine whether carrying a geolocator reduces survival and whether the reduction in survival becomes stronger when geolocators are carried for more than one year. We fit multi‐state open population capture–recapture models to the encounter history data. When assessing geolocator effects, we accounted for recapture probabilities, time since marking, and sex and year effects on survival. We found that carrying a geolocator reduced survival, which contrasts with many studies that examined return rates after one year. Importantly, survival declined with the time the individual had carried a geolocator, suggesting that the negative effects accumulate over time. Hence, the longer monitoring of birds carrying a geolocator may explain the difference from previous studies. Despite their larger mass, females tended to be more strongly affected by geolocators than males. Our results warrant caution in conducting tracking studies and suggest that short‐term studies examining return rates may not reveal all possible effects of tracking devices on survival
    corecore