187 research outputs found

    Gas bubble emissions at continental margins: Detection, mapping, and quantification

    Get PDF
    The significance of gas bubble emissions at deep-water hydrocarbon seeps on the global carbon cycle is poorly constrained. Methane is, however, an important component regarding past and future climate change scenarios. One of the main motivations of this study was to obtain a better understanding of the sources and transport pathways of gas bubbles in order to evaluate their input to the atmospheric methane inventory. Three areas were investigated, which are located in different geological settings. Gas emissions were found in all three areas, indicating that this is a common phenomenon at different types of hydrocarbon seeps also in deep-water environments. The case studies show that the gas bubble emissions represent an effective pathway to transport methane into the water column. The fate of the gas bubbles while rising through the water column is strongly influenced by hydrate formation around the bubbles. Nevertheless, it was generally observed that the emitted gas bubbles ultimately remain in the ocean interior and thus do not contribute to the atmospheric methane inventory

    Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island

    Get PDF
    Long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant sub-surface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans

    Seafloor investigations of the Kemp Caldera, the southernmost arc caldera volcano from the South Sandwich Island Arc

    Get PDF
    Kemp Caldera, situated in the south of the intra-oceanic South Sandwich arc, is one of the least explored submarine calderas that hosts hydrothermally active vent sites. The caldera was discovered in 2009. Since then, the focus has been primarily on biological studies. During the R/V Polarstern cruise PS119 in 2019, we gained new insights into the morphology, petrology and the formation of the Kemp Caldera. The ship's multibeam data provide an overview of the caldera bathymetry and backscatter characteristics. The new data revealed that the caldera is nested with two or possibly three concentric calderas. TV-sled and remotely operated vehicle (ROV) observations provide detailed visual data for the hydrothermally active sites of the vent field at the central resurgent cone and flare site at the NNW caldera rim. The central vent field is dominated by white smokers, where clams, sponges and other fauna thrive, while at the flare site inactive as well as actively venting chimneys have been found. The latter are characterized by metal-enriched fluids of temperatures ≥200°C. During ROV dives, rock samples were collected from the cone, providing the first information about the Kemp Caldera rock composition. The caldera rocks are dacitic, in contrast to the basalts and andesites of the neighboring Kemp Seamount. This suggests that the dacitic cone was formed by one or more later eruptions of differentiated magma, probably stored in shallow intrusions which are driving hydrothermal activity

    Hydrothermal Activity at a Cretaceous Seamount, Canary Archipelago, Caused by Rejuvenated Volcanism

    Get PDF
    Our knowledge of venting at intraplate seamounts is limited. Almost nothing is known about past hydrothermal activity at seamounts, because indicators are soon blanketed by sediment. This study provides evidence for temporary hydrothermal circulation at Henry Seamount, a re-activated Cretaceous volcano near El Hierro island, close to the current locus of the Canary Island hotspot. In the summit area at around 3000–3200 m water depth, we found areas with dense coverage by shell fragments from vesicomyid clams, a few living chemosymbiotic bivalves, and evidence for sites of weak fluid venting. Our observations suggest pulses of hydrothermal activity since some thousands or tens of thousands years, which is now waning. We also recovered glassy heterolithologic tephra and dispersed basaltic rock fragments from the summit area. Their freshness suggests eruption during the Pleistocene to Holocene, implying minor rejuvenated volcanism at Henry Seamount probably related to the nearby Canary hotspot. Heat flow values determined on the surrounding seafloor (49 ± 7 mW/m 2 ) are close to the expected background for conductively cooled 155 Ma old crust; the proximity to the hotspot did not result in elevated basal heat flow. A weak increase in heat flow toward the southwestern seamount flank likely reflects recent local fluid circulation. We propose that hydrothermal circulation at Henry Seamount was, and still is, driven by heat pulses from weak rejuvenated volcanic activity. Our results suggest that even single eruptions at submarine intraplate volcanoes may give rise to ephemeral hydrothermal systems and generate potentially habitable environments

    Bathymetric and Seismic Data, Heat Flow Data, and Age Constraints of Le Gouic Seamount, Northeastern Atlantic

    Get PDF
    Until the year 2019 only around 15% of the Earth’s seafloor were mapped at fine spatial resolution (<800 m) by multibeam echosounder systems (Wölfl et al., 2019). Most of our knowledge of global bathymetry is based on depths predicted by gravity observations from satellite altimeters. These predicted depths are combined with shipboard soundings to produce global bathymetric grids. The first topographic map of the world’s oceans so produced (Smith and Sandwell, 1997) had a resolution between 1 and 12 km, and subsequent improvements in data and filtering techniques led to several updates. The latest bathymetric grid of the General Bathymetric Chart of the Oceans (GEBCO_2020) uses the SRTM15+V2.0 data set, which has a grid spacing of 15 arc sec, equivalent to about 500 × 500 m at the equator (Tozer et al., 2019). This resolution does not imply that reliable depth data are available for each grid cell. There are vast areas of the oceans where the accuracy of these grids is limited by lacking shipborne multibeam data, which are needed for calibrating and ground-truthing predicted depths (Smith and Sandwell, 1994). The resolution and accuracy of the bathymetric grids are critical factors for global estimates of the number and size distribution of seamounts, in particular for small edifices of <1,000 m height (Wessel, 2001; Hillier and Watts, 2007; Kim and Wessel, 2011). A case in point is Le Gouic Seamount, located in the NE Atlantic about 100 km SW of Tropic Seamount on ca. 152 Ma crust, close to magnetic isochrone M24 (Bird et al., 2007). The seamount belongs to the Canary Island Seamount Province (CISP; van den Bogaard, 2013), also termed Western Saharan Seamount Province (WSSP) by some workers (e.g., Josso et al., 2019). It is listed in the Kim and Wessel (2011) seamount census with the ID KW-00902, located at 21.26216 ◦ W/23.0199 ◦ N, with a height of 498 m; hence it appears as a tiny cone in pre-2019 bathymetric grids (Figure 1a). After first mapping of large parts of the seamount by the French oceanographic survey vessel “Beautemps-Beaupré” in 2013, it is represented at its full height in the actual GEBCO_2020 grid, which is based on the SRTM15+V2.0 data set (Tozer et al., 2019). In this data report we present new multibeam bathymetric data for Le Gouic Seamount, mapping its full extent for the first time. The data were obtained during a transit of R/V METEOR cruise M146 in 2018. We also present a reflection seismic profile across the seamount that was shot during the mapping, and seafloor heatflow data obtained on a profile near the northeastern seamount base and co-located on the reflection profile. On the basis of this data we can place constraints on the age of the seamount, and speculate about possible rejuvenated magmatic activity

    Variability of Marine Methane Bubble Emissions on the Clayoquot Slope, Offshore Vancouver Island, Between 2017 and 2021

    Get PDF
    Seabed methane gas emissions occur worldwide at cold seeps located along most continental margins. Fluxes of methane gas released from the seabed in the form of bubbles can be extremely variable even over short time intervals. Some factors controlling the variability are still poorly understood. Here, we report on the results of continuous long-term sonar monitoring of bubble emissions at a depth of 1,260 m on the Clayoquot Slope, northern Cascadia margin. With a total monitoring duration of 4 years and a sampling period of 1 h, this is by far the longest high temporal resolution monitoring of seabed methane gas release ever conducted. Our results provide evidence that the diurnal and semi-diurnal tides influence the timing of the onset and cessation of bubble emissions. However, gas emissions within the monitoring area are active more than 84% of the time, indicating that tides alone are not sufficient to make venting pause. We hypothesize that the gas fluxes are transient but generally sufficiently high to maintain ebullition independently of the tidally-induced bottom pressure variations. Results also show that the tides do not seem to modulate the vigor of active gas emissions

    Active gas seepage in western Spitsbergen fjords, Svalbard archipelago: spatial extent and geological controls

    Get PDF
    This study presents the first systematic observations of active gas seepage from the seafloor in the main fjords of western Spitsbergen in the Svalbard archipelago. High-resolution acoustic water column data were acquired throughout two research cruises in August 2015 and June 2021. 883 gas flares have been identified and characterized in Isfjorden, and 115 gas flares in Van Mijenfjorden. The hydroacoustic data indicate active fluid migration into the water column. Interpretation of 1943 km of regional offshore 2D seismic profiles supplemented the water column and existing gas geochemical data by providing geological control on the distribution of source rocks and potential migration pathways for fluids. In the study area, bedrock architecture controls the fluid migration from deep source rocks. Faults, high permeability layers, heavily fractured units and igneous intrusions channel the gas seepage into the water column. The observations of gas seepage presented in this study are an important step towards the assessment of how near-shore seepage impacts upon the carbon budget of Svalbard fjords, which constitute a globally recognized early climate change warning system for the High Arctic
    corecore