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Abstract Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold
seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific
Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were
used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-
depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables
correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity.
Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several
months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of sev-
eral weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor
initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure
changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced
pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in
exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free
gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for
the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled
discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world’s oceans.

1. Introduction

Natural marine gas bubble emissions have been found at numerous sites around the world ocean margins,
providing an effective transport pathway for light hydrocarbons from the sediments into the water column.
Several studies focused on quantifying the amount of emanating gas entering the hydrosphere, e.g. in the
Black Sea [Nikolovska et al., 2008; Greinert et al., 2010; Romer et al., 2012a; Sahling et al., 2009], the Makran
continental margin [Romer et al., 2012b], the Cascadia margin at southern Hydrate Ridge [Torres et al., 2002],
as well as the Hakon Mosby mud volcano [Sauter et al., 2006]. The fraction of released methane reaching
the sea-air boundary was studied in order to evaluate its contribution to climate warming as powerful
greenhouse gas in the atmosphere [e.g., Greinert et al., 2010; Leifer and Patro, 2002; Leifer and Judd, 2015;
McGinnis et al., 2006; Shakova et al., 2010]. Most studies providing methane flow quantifications, however,
do not account for spatial and temporal variability, due to the fact that short-term observations and meas-
urements were usually acquired during research cruises limiting the time for experiments. But natural gas
emissions have been most often observed to be highly transient in a variety of time scales [e.g., Boles et al.,
2001; Kannberg et al., 2013; Tryon et al., 1999; Varadharajan and Hemond, 2012]. Long-term monitoring, as
such provided by Ocean Networks Canada’s cabled ocean observatory [Barnes et al., 2011], is therefore
essential to appraise flux calculations and allow estimating uncertainties. Besides a better understanding of
the magnitudes of gas bubble emissions variability, the factors influencing the observed changes in flux
activation and triggering are still largely debated. Methane fluxes might be controlled by fluid flow rates
mediated by microbial processes in marine sediments or physical changes in bottom pressure [Fechner-Levy
and Hemond, 1996; Leifer and Boles, 2005; Scandella et al., 2011], which can be influenced by e.g., bottom
water currents, storms, tides, or swell. Furthermore, a correlation of fluid emissions with earthquakes has
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Figure 1. Overview of the study area. (a) Map of the Cascadia subduction zone including the plate boundaries and earthquake centers from June 2012 to July 2013. The backbone cable
of Ocean Networks Canada’s cabled observatory NEPTUNE is installed at the seafloor in a loop shape connecting the shore station on Vancouver Island over the entire continental mar-
gin with the mid-ocean ridge (MOR). (b) The IMAGENEX sonar is located in a seep area at the so-called Clayoquot Slope node site and connected to the NEPTUNE cable.

been postulated in several studies [Fischer et al., 2013; Kessler et al., 2005; Lapham et al., 2008; Mau et al.,
2007] and even hypothesized for the study area [Lapham et al., 2013], although possibly due to the lack of
large earthquakes in the time-series, such a correlation could not be proven. Lapham et al. [2013] also dis-
cussed a possible tidal influence on fluid flow activation, but unfortunately the pore fluid sampling frequen-
cy did not allow resolving tidal cycles. Studies in other seep areas, however, do indicate gas flux variability
related to tidal pressure with an indication of increasing flux during falling tidal pressure, e.g., at Coal Oil
Point [Boles et al.,, 2001], Hydrate Ridge [Tryon et al., 1999; Torres et al., 2002], offshore Taiwan [Hsu et al.,
2013], or Cape Lookout Bight [Martens and Val Klump, 1980].

In this study, we use long-term monitoring data of gas bubble observations by frequent sonar scans at a
seep site off Vancouver Island in 1250 m water depth to (a) characterize the gas emission variability and (b)
analyze the factors influencing its activity. By providing detailed long-term observations, we aim for more
precise quantifications of total gas fluxes from the sediment to the ocean and, hence, better understand
the significance of naturally driven hydrocarbon gas emissions. Further, the seafloor installations equipped
with numerous sensors enable correlation of the methane flux variability with bottom pressure changes,
which helps to elucidate the possible trigger mechanisms at the studied seep site. Our results from gas
emissions offshore Vancouver Island might be transferred to similar seep sites and should provide a better
understanding of controlling factors in such fluid systems.

1.1. Study Area
The Northern Cascadia continental margin offshore Vancouver Island is formed by the subduction of the
Juan de Fuca Plate under the North American plate creating an accretionary prism (Figure 1a). In the course
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of subduction, the sediments deposited on the incoming oceanic crust are accreted and furthermore folded
and faulted forming elongated anticlinal ridges up to 700 m in height above adjacent basins [Davis and
Hyndman, 1989]. Accretionary margins are usually prone to the occurrence of seafloor gas seepage and
mud volcanism [e.g., Kopf, 2002; Suess, 2010]. Fluid flux is driven by the tectonic forces during the accretion
process [e.g., Hyndman et al., 1993] and the degradation of organic matter often leads to a high amount of
light hydrocarbons in the sediments within the prism. Offshore Vancouver Island, several areas of seeping
fluids and free gas emissions are known and visually proven including the site investigated in this study
near Bullseye Vent [e.g., Riedel et al., 2002, 2006a, 2010a] at the so-called Clayoquot Slope, which is located
at a midslope basin in about 1250 m water depth and approximately 20 km landward of the deformation
front. The evolution of fluid expulsion (cumulative volume as well as expulsion rate) from tectonic processes
was first modeled by Hyndman and Davis [1992] for the accretionary prism off Vancouver Island and subse-
quently substantiated with pore-fluid data from drilling and coring based on Integrated Ocean Drilling Pro-
gram (IODP) Expedition 311 [Riedel et al., 2010b]. The highest expulsion rate predicted is ~2.5 mm yr’1, and
the largest signal in pore fluid expulsion in form of regional pore-water freshening was seen at ~22 km
from deformation front. Coincidentally, within a close range around this distance from the deformation
front, a high number of cold seeps (in addition to Bullseye Vent), carbonate mounds, and gas flares are
observed [e.g., Riedel et al., 2002; He et al., 2007; Riedel et al., 2010a; Furlong, 2013].

The margin is also characterized by abundant occurrences of gas hydrate, suggested by widespread obser-
vations of the seismically detected bottom-simulating reflector [e.g., Hyndman and Spence, 1992; Yuan et al.,
1996] and proven from extended drilling and coring operations as part of Ocean Drilling Program (ODP)
Leg 146 [Westbrook et al., 1994] and IODP Expedition 311 [Riedel et al., 2006b]. In a few areas gas hydrates
were found also at shallow subseafloor depths, e.g., at Bullseye Vent [Riedel et al., 2006a, 2006b; Lu et al.,
2005] or exposed on the seafloor at the Barkley Canyon site [e.g., Spence et al., 2001; Chapman et al., 2004;
Thomsen et al., 2012], the latter being the only known area in Northern Cascadia of thermogenic gas and oil
seepage [e.g., Pohlman et al., 2005]. Gas hydrates at Barkley Canyon occur as structure Il as well as structure
H[e.g. Lu et al., 2007].

The Cascadia Subduction Zone is characterized by a potentially fully locked seismogenic zone where very
large thrust earthquakes can occur but currently only little seismicity on the main thrust plane is observed
[Hyndman and Wang, 1993; Obana et al., 2015]. Paleoseismic data from the margins of southern British
Columbia, Washington, and Oregon indicating abrupt vertical motion and shaking in coastal regions
[Clague, 1997; Hyndman and Rogers, 2010] and analyses of simultaneous turbidite flows in several deep-sea
channels were interpreted that major earthquakes did occur on the northern Cascadia margin in irregular
intervals averaging 500-530 years [Goldfinger et al., 2012]. The most recent megathrust earthquake occurred
in 1700 [e.g., Hyndman and Wang, 1995; Clague and Bobrowsky, 1994; Atwater et al., 1995; Satake et al., 1996;
Goldfinger et al., 2003; McAdoo et al., 2004]. However, the Cascadia subduction zone lacks widespread earth-
quakes in the forearc region and in the subducting Juan de Fuca Plate [McCrory et al., 2012; Obana et al.,
2015], which is also revealed by only minor earthquake detections during the 13 month of our study (Figure
1a). In contrast, numerous earthquakes have been recorded along the offshore ridge-fracture zone system,
both the divergent and transform segments. Additional main earthquake centers are at the Queen Charlotte
fault system (north of subducting Explorer Plate), along the Nootka Fault (separating the Explorer and Juan
de Fuca Plates) and at the Mendocino triple junction (the juncture of three plate-bounding faults: the Men-
docino transform fault, the Cascadia subduction zone, and the San Andreas fault).

2. Methods

Ocean Networks Canada’s North-East Pacific Time Series Underwater Networked Experiments (NEPTUNE)
cabled ocean observatory [Barnes et al., 2011] enables nondestructive, controlled experiments, and time-
series observations integrating numerous sensor’s recording data in several areas of scientifically high inter-
est offshore Vancouver Island (Figure 1a). One of the five nodes of the NEPTUNE cabled observatory con-
necting various instruments is installed at Clayoquot Slope (Figure 1b) with the purpose of monitoring the
fluid system in a setting with the margin’s highest fluid expulsion rates influenced by tectonic forces. Data
storage, retrieval, and delivery are managed by the Ocean Networks Canada’s Oceans 2.0 system and data
are made readily accessible for the public through the internet.
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Figure 2. Visualization of sonar data showing extracted flares in (a) a 3-D-plot and (b) a combined 2-D-plot allowing for detecting source locations of emanating gas bubbles (white stars).

2.1. Sonar

Monitoring the gas bubble emissions from the seafloor into the water column is enabled by a rotating
IMAGENEX Model 837B Delta T multibeam profiling sonar installed in combination with an 837 Delta T Azi-
muth Drive. The sonar operates at a frequency of 260 kHz and set to the maximum range of 100 m. The
transducer beam width is 120° X 3° (vertical and horizontal, respectively) and a rotation of 360° is achieved
after 120 pings with clockwise rotating steps of 3°, which takes about 2 min per sweep, and stored in a man-
ufacturer’s raw file. Besides the strong reflection of the seafloor, free gas in the water column also strongly
enhances the received backscatter signal, and vertically rising gas bubble emissions are therefore clearly
imaged in the records. To further analyze the raw data, processing steps like e.g., beam-forming and time-
variant gain were applied. The data were then filtered to remove some noise on the central channels, to cut
the vertically projecting sector, and to isolate the free gas reflections, to finally (a) image the records in a 2-
dimensional or 3-dimensional plot (Figures 2a and 2b, respectively), and (b) produce time-series by extract-
ing information of the activity of the gas emissions. In a simple approach, any presence of a gas bubble
stream was detected manually and plotted as events of activity over time. Furthermore, in a semiquantita-
tive approach, the mean value of the received backscatter intensity was calculated for each scan and plot-
ted against a timeline. A challenge in the analysis is the presence of nonbubble backscatter resulting from
e.g. fish, large plankton, and detrital particles as described by DelSontro et al. [2015] and Scandella et al.
[2016]. Our visual inspection does allow for a relatively reliable distinction between bubbles and nonbubble
targets; however, they had to be neglected for the automatized mean sonar backscatter calculation.

Data gaps result from failures of the instrument, either due to entire breakdown for five weeks in autumn
2012 or due to stagnancies of the rotating device, which happened two times each lasting ~2 weeks in
spring 2013.

2.2, Additional Sensor Data for Time-Series Analyses

A variety of installations are connected to the NEPTUNE node at Clayoquot Slope (Figure 1b), enabling
simultaneous records at the same study site for comprehensive analysis and comparisons. For this study,
time-series data of (a) the bottom pressure recorder (BPR), (b) the current meter, (c) the conductivity-
temperature-depth (CTD) sensor, and (d) the seismometer were extracted (supporting information Table
S1). The seafloor pressure (in decibar) from the BPR, as indicator for the tide information, was down sampled
to one minute and 10 min for statistical analyses and to 1 h for overview plots. Spectrograms for pressure
were generated for illustration of storm periods and earthquake events [see Davis and Heesemann, 2015].
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One hour averages were also downloaded for the current speed (in m/s) from the Nortek Aquadopp Current
Meter and the temperature data (in °C) from the CTD (Sea-Bird Microcat SBE37SIP). Data from the broad-
band seismometer (Guralp CMG-IT Broadband Seismometer) were condensed to Real time Seismic Ampli-
tude Measurement (RSAM; Endo and Murray [1991]) data averages; the vertically orientated component
(LHZ or MHZ) were downloaded from the Incorporated Research Institutions for Seismology (IRIS) and aver-
aged to once per minute.

Information about sea surface wave heights were derived from nearby Buoy 46206 data downloaded from
the Fisheries and Oceans Canada website (http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-
vagues/search-recherche/list-liste/data-donnees-eng.asp?medsid=C46206), and the characteristic wave
height, calculated from low frequency cut-off to maximum frequency (VCAR), was chosen for comparative
time-series plots. Earthquake events (local, as well as teleseismic) were exported both from the IRIS earth-
quake browser (www.iris.edu/ieb), and from the website of the Natural Resources Canada earthquake cata-
log (http://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bull-en.php).

2.3. Hydroacoustic Systems

Hydroacoustic data including multibeam and single beam echosounder records were collected during several
expeditions with research vessels to the study area of Clayoquot Slope. Water column anomalies visible in sin-
gle beam echosounder data collected before 2010 were analyzed by Zyla [2011] and Riedel et al. [2010a]. The
data collection by Zyla [2011] includes flare locations detected by a horizontally looking sonar mounted on
the ROV Doc Ricketts from the Monterey Bay Aquarium Research Institute (MBARI) deployed during an expedi-
tion with the Western Flyer in 2009 [see Furlong, 2013]. Additional information of flare occurrences were col-
lected during a cruise with R/V Tully in September 2010 [Riedel et al., 2014; Whiticar et al., 2010] and, most
recently, in May 2014 using an EK60 split beam echosounder operating with frequencies of 18, 38, 70, 120,
and 200 kHz. However, flares became best visible at the lower frequencies due to resonance frequency of the
emanating bubbles in that water depth, and therefore the 18 kHz signal was analyzed for this study. Multi-
beam data were recorded during a cruise with R/V Falkor in September 2013 using a Kongsberg EM710 which,
in addition to the information of the bathymetry, also records backscatter intensities in the water column
allowing for flare detection. RAW data of the single beam and multibeam systems were imported into QPS
Fledermaus Midwater Tool, and after a simple processing enhancing the contrast, exported as sd-format files
to be opened together with the bathymetric data in the 3-D Fledermaus software.

In addition, the AUV D. Allan B. owned by MBARI was deployed at Clayoquot Slope in May 2009 during a
research expedition on R/V Zephyr [see e.g., Furlong, 2013]. The AUV was equipped with a single beam
echosounder Edgetech 2—15 kHz chirp subbottom profiler for imaging subseafloor structures and a RESON
7215 multibeam echosounder (operating at 200 kHz) providing high-resolution bathymetric data with
~1 m lateral resolution and also flare information within the water column record by data processing with
CARIS Hips and Sips.

3. Results

3.1. Hydroacoustic Observations at Clayoquot Slope

At Clayoquot Slope, several flares have been detected hydroacoustically during research expeditions to the
study area between 2006 and 2014. Although a systematic flare mapping of the entire area was lacking until
now (with the exception of the early map shown by Riedel et al. [2010a]), the main seep sites were already
identified using high-resolution seismic techniques in 1997 [Gettrust et al, 1999] and subsequently con-
firmed using 3-D imaging techniques [Riedel et al., 2002]. The first recognition and digital recording of gas
flares were made in 2006 [Willoughby et al., 2008]. Prior to the R/V Falkor cruise in 2013, the water column
was surveyed using single beam echosounders with a relatively small footprint (of about 7% the water
depth) in contrast to multibeam systems. Therefore, gas emissions located as close together as the footprint
of the echosounder appear as connected backscatter anomalies and cannot be distinguished. However, the
records provide an overview of the seep sites and show that at a few sites, flares have been frequently
observed whereas at a few other sites such anomalies could be detected only once (Figure 1b). The main
seep sites were informally named Gastown Alley, where several flares are aligned in a SW-NE direction, and
Bubbly Gulch, a region in the NE sector of the study area, where several flares occur associated with a sub-
marine slope failure that exposed gas-charged sedimentary layers, resulting in the formation of several
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Figure 3. (a) 3-D plot showing a high-resolution bathymetric grid recorded by AUV Sentry in 2009 plotted together with flares extracted
from ship-based multibeam data in 2013 and the sonar position (symbolized by a red dome resulting from the detection limit). Flares
aligned in Gastown Alley and Bubbly Guich reach 700 m in height. (b) Subbottom profile recorded with the AUV Sentry indicates diffuse
blanked zones related to gas hydrate occurrences at Bullseye Vent and gas accumulated in the sediments below Gastown Alley and
migrating along sediment layers toward Bubbly Gulch.

small seafloor domes hosting free gas and gas hydrate [e.g., Paull et al., 2009; Furlong, 2013]. Although form-
ing a conspicuous morphological depression at the seafloor with massive underlying gas hydrate layers up
to 50 m below seafloor [Riedel et al., 2006a] and widespread carbonate crusts [Riedel et al., 2002], no gas
emissions were detected at the so called Bullseye Vent structure.

The flares detected with the ship-based echosounders appear different in intensities and heights, however,
both parameters are dependent on the geometry of the vessel track to the flare locations and the quality of
the records when using the single beam echosounder. Nevertheless, the multibeam records collected in
2013 indicated the presence of at least six flares with obvious differences in height as well (Figure 3a). Flare
heights ranged between 500 and 700 m from the seafloor into the water column, the highest one disap-
peared in about 550 m below sea level (mbsl) at approximately the upper limit of the gas hydrate stability
zone.

In the subbottom echogram imaging the sediment structures below Bullseye Vent, Gastown Alley, and Bubbly
Gulch, the presence of enhanced gas content and possible migration pathways to the sea surface become vis-
ible (Figure 3b). The subbottom profile shows the generally horizontally layered sediments of the first ~30 m
below sea floor (mbsf). However, below the prominent Bullseye Vent structure the strata is obscured, probably
resulting from shallow gas hydrate presence as revealed by prior seismic interpretation and sediment coring
[Riedel et al., 2006a] as well as authigenic carbonate precipitations. A similar blanking effect is also visible
below Gastown Alley, but in contrast to Bullseye Vent in greater depth of approximately 20 mbsf. Due to the
fact that intense flares are aligned at the seafloor on top (Figure 3a), we assume that the blanking is the result
of enhanced gas and/or gas hydrate content in that area and gas migrated from this shallow reservoir
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vertically through the sediment strata to the
surface where it emanates into the water col-
umn. Some diffuse blanking is also apparent
below the sonar installation and Bubbly Gulch.
Here, however, the sediment strata appear
slightly bent upward and truncated by the
depression. Gas is probably channeled mainly
along the strata and fuel the flares detected
within the depression of Bubbly Gulch (Figures
3a and 3b).

3.2. Gas Emission Activity

3.2.1. 1 Year Time Series at Transient
Flares With 1 h Interval

Between June 2012 and July 2013, the sonar
records show phases of activity and inactivity
in diverse variability patterns. Bubble streams
become visible in the scanned hemisphere
when rising vertically or most often deflected
Figure 4. Heat map of flare sources indicates a main seep area located by currents. Depending on the distance of
south and west of the sonar. Image created with ImageJ plugin “Heat- the gas source to the installed sonar and the
Map From Stack” by Samuel Pean. direction of the current, the streams are dis-
played as linear anomalies of up to 100 m. Most often, single streams can be distinguished, however, if sev-
eral streams emanated in a small area, the resolution may not be high enough to visualize them separately
and the emission appears as a wide column or cloud. In various examples, bubbles emanate also in pulses,
which is visible in the sonar records as elongated anomalies not attached to the seafloor. The amount of
bubble streams highly vary between one individual to a few (<5) active streams at the same time. The
source locations of the detected bubble streams at the seafloor have been plotted in order to visualize the
distribution pattern. The result presented in a heatmap indicates a main seep area just southwest of the
sonar position with a dimension of ~40 X 70 m (Figure 4). Besides this main seep area, some orifices have
been also detected northwest at larger distances (~70-120 m) to the sonar position and just a few bubble
streams appeared in other areas; however, all of these secondary streams have been active only a few times
and therefore do not appear on the heatmap.

In a first approach to analyze the variability of the gas emissions in the scanned hemisphere, the images
produced for each hour were inspected manually for the presence of anomalies representing bubble
streams (multiple high-backscatter reflections with a roughly vertical alignment). Times at which active gas
expulsion could be determined were plotted over time in form of a bar chart with grey areas marking
manually-identified activity periods as shown in Figure 5. During one year of observations, different generic
phases of gas emission activity occurred. The first three months starting from June to end of August 2012
were characterized by about equally active and inactive time periods, each lasting between hours to several
days. The following months almost until end of 2012 showed mostly active gas emission, interrupted by a
few brief periods of inactivity (<6 h). The last 7 months of the record until mid of July 2013 was dominated
by inactivity, but with frequently active time periods lasting only a few hours.

3.2.2. Short-Term Variability of Gas Emissions

In addition to the simple illustration of active and inactive time periods of gas emission in a bar chart, we
calculated the mean sonar backscatter intensities of each sonar scan allowing for a semiquantitative mea-
sure (in relative counts due to the uncalibrated sonar) of the bubbles emitted. Scans including gas bubble
streams show elevated values whereas those without range in a certain interval (between 0.125 and 0.135),
the mean background from seafloor backscatter and noise. Phases with considerable deviating mean back-
ground values indicate a malfunction of the rotational device of the sonar head, as happened twice in
March and May 2013, respectively (marked therefore also as gaps in Figure 5). The slightly inclined seafloor
morphology, which is partly recognized in the sonar records, is most probably the reason for the deviant
mean sonar backscatter intensities. By comparing the automatized mean sonar backscatter intensities with
the manually identified bubble ebullition activity phases several observations have been made:
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Figure 5. Time series plot over 13 month combining data of gas bubble activity, bottom pressure records, real-time seismic amplitude measurement (RSAM), wave height, bottom water
temperature, and current speed. Indicated data gaps refer to malfunction of the sonar recording.

1. Elevated mean sonar backscatter intensities correspond with very few exceptions to activity phases, con-
firming a direct relationship. Some short activity phases as during Phase 3, with visually identified very
minor flare activity, do not show elevated mean backscatter values (Figure 6c¢), indicating the limited
detectability in the intensity data.

2. Mean sonar backscatter intensities during a single activity phase continuously increase until a maximum
and subsequently decrease continuously without many runaway values or spikes (Figure 6c) that would
indicate a fluctuating subpattern or a major bias by the 1 h scanning interval due to unresolvable flux
heterogeneities. Both, decrease and increase take about the same time of roughly 3 h each.

3. During activity phases lasting longer than about half a day, e.g., during Phase 1 and 2 (Figures 6a and 6b,
respectively), the mean sonar backscatter intensities indicate repeated sequences of increasing and
decreasing gas emission activity.

4. A dominant period of 12.4 h was identified by analyzing the mean backscatter values using Fourier trans-
formation (supporting information Figure S1). This result is identical to the period of the principle lunar
semidiurnal M2 tidal component. The signal is less apparent in Phase 3 during which gas escape was
weakest and active ebullition periods occurred less often.

3.3. Seismic Events Related to Gas Emission Activity

Analyses of the impact of earthquake events on the seafloor sediments at Clayoquot Slope have shown that
various events even from distances >500 km and also teleseismic events could be recognized in RSAM
ground shaking and in the bottom pressure records. In total, 70 abrupt high-intensity anomalies were
detected between June 2012 and July 2013 in the data of the RSAM and 79 anomalies have been marked in
the spectrogram for pressure (Events in Figure 5). About 90% of the anomalies in the RSAM seismometer
shaking data correspond to events observed in the bottom pressure records. The same percentage of
events in the BPR data (~90%) correspond to an anomaly, when the seismometer showed evidence for
ground shaking, which might be caused by earthquakes. In order to analyze this dependence, all earth-
quake events documented for the same time period and sourced within the area of the Juan de Fuca and

ROMER ET AL. TIDALLY CONTROLLED GAS BUBBLE EMISSIONS 3804



@AG U Geochemistry, Geophysics, Geosystems

10.1002/2016GC006528

~12 hour tidal cycle

[falling rising
02 3
g2
E 01 3
3 @
i} 0 <
PHASE 1
0.2 — 1286
. i
2 0.18 — s
g2 ] 1284 § 3
5<0.16 — g g
cg — 25
2§ 014 —
=3 p 1282
012 T T T | T | T
6 12 18 18
72 27112 317112 4712
PHASE 2
0.4 — — 1286
2 - L
L& | a o
5g 03 L 1284 23
g < _ o g
c g - 23
§5 02 —
23 R — 1282
3
0.1 T T T I T | T
6 12 8 8 18
29/8/12 30/8/12 31/8/12 1/9/12
PHASE 3
> 0.2 i — 1286
55018 — B _—
§< * — 1284 23
28016 — gt
g% - - 23
S 2
<014 —
3 P — 1282

0.12 T T T I T T T I T T T ‘

8 6 12 18 6 12 18
11/6/13 12/6/13 13/6/13

Figure 6. Excerpts of 3 days for each phase illustrating the relationship between mean sonar backscatter intensity (red) with the tidal pressure
curve (black line). Bottom water temperature (yellow line) and current velocity (brown line) show a typical negative correlation with the tidal cycle.

Explorer Plates were used. The result illustrates that >50% of all events in the BPR can be explained by an
earthquake. Those earthquakes being recognized at Clayoquot Slope in the RSAM (and BPR) data were fur-
ther marked in the map (supporting information Figure S2). The earthquake locations are scattered along
all plate boundaries around the Juan de Fuca and Explorer Plates, sourced either from the subduction zone,
transform faults, or along the mid ocean ridge. The distances from the study area to the earthquakes recog-
nized are up to ~650 km (supporting information Table S2). However, the IRIS database gives evidence for
595 earthquakes in the time period, out of which just 60 (~10%) possibly caused ground shaking at Clayo-
quot slope. Most earthquakes recorded at the sonar site on the seismometer and BPR occur at an azimuth
of ~140° (measured relative to the sonar’s position, supporting information Figure S3) with distances rang-
ing from a minimum of 88 km to a maximum of 1050 km for local events originating at the Juan de Fuca
plate system. Teleseismic events seen in the RSAM and BPR records are from as far as 9934 km. Magnitudes
for the local events range from Mw = 2.2 to Mw = 7.8.

An example in Figure 7 shows a time-series plot over 14 days in August 2012: six anomalies were recorded
in the RSAM, five of them become also visible in the BPR spectrogram, and also five anomalies can be corre-
lated to earthquakes documented in the IRIS database. However, six further earthquakes occurred during
this time period but have no effect in the BPR or RSAM record. Nevertheless, neither events in RSAM nor
earthquake events occurred at the same time as an onset of gas emission activity. This example is not
shown as an exception, rather as the norm; over the entire time period of ~13 month of the 595 earth-
quakes documented in the IRIS database just five occurred simultaneously to an onset of flare activity seen
in the sonar records. Similarly, the 70 anomalies detected in the RSAM time-series over the entire 13 month,
only one event was seen together with an onset of gas emission activity.

3.4. Oceanographic Conditions

3.4.1. Seasonal Changes

The duration of the winter storm season in the study area offshore Vancouver Island can be illustrated best
using the power spectrum of the BPR record (Figure 5c), in which the intensities are illustrated by different
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Figure 7. Details of the time-series analyzed (2 weeks in August 2012) focusing on the gas emission activation (red arrows) in relation to bottom pressure, wave height, RSAM, and earth-

quake events.

colors and plotted for periods between 1 and 1000 s on the y axis. The intensities both in long and short
periods were frequently elevated in the timespan between October 2012 and March 2013 (Figure 5c), coin-
ciding with increasing wave heights up to a maximum of over 8 m in February 2013 (Figure 5e) and also
increased seismic amplitudes measured and plotted as RSAM time-series (Figure 5d). This relationship
becomes especially visible focusing on the long periods in the BPR power spectrum, where yellow and red
colors (illustrating high intensities) are generally accompanied by peaks in the RSAM and wave height val-
ues and concentrated in the winter months.

Bottom water temperatures between June 2012 and July 2013 ranged between 2.74 and 3.11°C with an
average of 2.91°C over the ~13 months experiment (Figure 5f). The average value for the winter storm sea-
son (as defined above) is 2.89°C and slightly lower than during the other months that have a mean value of
2.92°C. The time-series further indicates trends lasting days to weeks (arrows in Figure 5f) that do not follow
a frequent pattern. Finally, it appears that the temperature curve further shows a small-scale (<days) fluctu-
ation that cannot be resolved with this overview plot.

Bottom water current magnitude values range between 0.01 and 0.20 m s~ ' with an average of 0.07 ms™'

(Figure 5g) and the current direction indicates a slight dominance of the south-west (downslope) directed
component. No obvious long-term trend has been recognized, but we observed small-scale (<days) fluctua-
tions with amplitudes reflecting almost the entire range of the time-series.

3.4.2. Tidal Analyses

The bottom pressure variation recorded by the BPR at Clayoquot Slope can be 99.9% explained by the astro-
nomic tide model used and the harmonic analysis results in the following main constituents: principal lunar
semidiurnal M2 (40%), luni-solar declination diurnal K1 (18%), principal solar semidiurnal S2 (11%), lunar diur-
nal O1 (11%), larger lunar elliptic semidiurnal N2 (8%), solar diurnal P1 (6%), and others <6%. The Tidal form
number (by calculating the amplitudes of O1+K1/M2+S2) of 0.58 indicates a mixed, mainly semidiurnal tidal
regime. The M2 component is characterized by a period of 12.42 h equivalent to a frequency of 1.93d".

The mean bottom pressure value recorded during the analyzed timespan is 1284.0 dbar and range between
1281.7 and 1285.8 dbar. Average pressure values of the maximum and minimal turning points are 1285.0
dbar (standard deviation SD = 0.4) and 1283.0 dbar (SD = 0.5), respectively. Between turning points pres-
sure falls and rises on average 1.9 dbar (SD = 0.8).

Besides the bottom pressure also the bottom water temperatures and the current magnitude records illus-
trate the tidal influence in the study area. Both data sets show a variation with the same frequency as the
M2 tide as calculated for the bottom pressure records. Temperatures and current velocity curves are almost
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parallel to each other and reverse to bottom pressure, e.g.,, maximum temperatures and highest current
velocities coincide with low tides and vice versa (Figure 6).

4. Discussion

4.1. Trigger Factors for Gas Emission Activation

A major objective of this study was to examine and evaluate several different parameters possibly affecting
gas emission activity. During the analyzed timespan of about 1 year the sonar records revealed 236 flare
onsets, mainly occurring in Phases 1 and 3 when active and inactive periods alternate most often.

4.1.1. Earthquake Shaking

One hypothesis was that earthquakes might affect subsurface fluid flow as a relation between methane
release and earthquakes has been postulated already in several studies. Mau et al. [2007] measured an
increase in bottom water methane concentrations offshore Chile after an earthquake in 2002. Another
earthquake happening in the Gulf of Mexico was hypothesized to have caused an increase in methane from
the sediment to the water column in an area with present gas hydrate deposits [Lapham et al., 2008]. Fischer
et al. [2013] presented geochemical analyses of sediment cores from the Makran subduction zone, indicat-
ing a substantial increase in upward flux of gas dated to correlate with the strongest earthquake in the Ara-
bian Sea in 1945. Also, hydroacoustically detected gas flares found in a tectonically active area in the
Okhotsk Sea were related to have caused an increase in bottom water methane concentrations after the
Neftegorsk earthquake in 1998 [Obzhirov et al., 2004]. A similar data set is shown from the Cariaco Basin
where higher methane concentrations in the water column were assumed to be a result of a 1967 earth-
quake [Kessler et al., 2005]. The most reasonable explanation that earthquakes trigger gas emission is the
creation of pathways for free gas to migrate easier through the sediments. Seismic shaking and exerting
shear stress in the sediments result in fracturing and possibly gas ebullition.

Nevertheless, our study did not reveal any relation between gas emission activation and earthquake occur-
rences. Although we could illustrate that 79 of the earthquakes shown in Figure 1a have been recognized in
the bottom pressure records and also resulted in abrupt movements of the surface sediments, only one of
them happened approximately simultaneously to a flare onset. A similar result has been published by Lap-
ham et al. [2013] that focus on studying diffuse methane flux measurements within Bubbly Gulch, located
just ~300 m northeast of the sonar installation we analyzed here. Although the authors initially hypothe-
sized that regional seismic activity may control the variable methane fluxes, they could not find a correla-
tion between earthquakes and methane flux. They suspected that this lack of correlation might be
explained by the minor magnitudes of earthquakes that occurred during the time series in their study,
which would suggest a threshold level (M > 4) of earthquake activity that could trigger methane release.
During our study, 13 earthquakes with magnitudes M >4 and located less than 300 km in distance to the
gas emission site were detected. Six of these earthquakes occurred during a data gap of the sonar record,
limiting the number of events to seven available for an association to gas flares observations. Nevertheless,
none of the seven earthquakes can be directly preceded to a flare onset. However, when considering the
relationships between earthquake shaking and an onset of gas emission, a controlling factor is the azimuth
between the source of shaking and the sonar-site. Certain earthquake’s focal mechanisms may promote
amplitude maxima (or minima) within the direction of the travel-path of the earthquake waves. Although a
broad distribution of azimuths has been seen in the data set, the majority of earthquakes recognized (>
75%) reached the sonar at an azimuth of around 140° (see supporting information Figure S2). Detailed anal-
ysis of the radiation pattern of P-, S-, and surface wave energy for each individual earthquake would need
to be carried out if focal mechanisms were available, in order to identify whether the sonar-site at Clayoquot
Slope is within the compressional or expansion lobe or even on a nodal plain of no motion. This may shed
further light into the relationship of earthquake shaking and the ability to induce gas emission. Also, the
sediment-filled basin around the sonar site [e.g., Riedel et al., 2002] may provide a shape that results in local
amplification of ground motion from only certain frequencies and azimuths (i.e., resonance effects), similar
to the response of buildings to earthquake shaking. The absence of any connection between earthquake
shaking and gas emission may be explained by these geometric effects. However, the mostly small earth-
quakes detected in the time period of the sonar activity were too small for defining focal mechanisms and
also may be simply too small in magnitude to induce significant ground motion to mobilize gas or even
result in gas ebullition.
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Additionally, the frequency of sonar measurement of one value per hour could limit the earthquake relation-
ship analysis. If earthquake shaking induces a short-lived spike in bubble intensity, this would not necessarily
be detectable in the data set. In supporting information Table S2, we used the TauP toolkit [Crotwell et al.,
1999] to calculate the travel time for P- and S-waves (body waves) to reach the sonar site from the hypocenter
for a standard reference Earth-model. The maximum delay is ~2.3 min for P-waves, and ~4 min for S-waves.
Surface waves, with usually larger amplitudes but lower frequency content than body waves, traveling along
the seafloor would be slower, roughly at half or one third of the speed of the body waves. This would increase
the delay time of those values reported in supporting information Table S2 by a factor of 2-3; yet, this results
in no more than ~10 min delay for surface waves originating at local events around the Juan de Fuca plate. A
possibility to detect short-lived fluctuations of bubble intensity from earthquake shaking is to increase sam-
pling of the sonar immediately after a local earthquake is detected. Although detected by the seismometer,
none of the earthquakes did seem to result in long-lasting increased gas emissions.

Linked to the question of earthquake-trigger mechanisms are long-term variations in the stress state of
the subducting oceanic plate, as e.g., associated with episodic tremor and slip or ETS underneath Vancou-
ver Island [e.g., Dragert et al., 2001; Kao et al., 2009]. Although at far distance to the offshore accretionary
prism (~100 km lateral), changes in the crustal stress can propagate updip and affect the accretionary
prism [Davis et al., 2011]. Approximately 14 days after the onset of ETS at the Costa Rica margin, changes
in borehole pressures were observed, indicating that the outer prism experienced contraction. Such
mechanism could also contribute to changes within the stress state of the sediment column and thus
may influence gas emissions on a broader scale. ETS occurs underneath Vancouver Island periodically
with a recurrence interval of 14-16 months. During the time of our gas-emission record, ETS occurred
between 30 August and 11 October 2012, with some first indication of tremor activity as early as 14
August 2012 (https://www.pnsn.org/tremor/tremor-log/ets-event-of-summer-2012). Approximately 10
days after the onset of ETS underneath Vancouver Island, the gas emission activity at Clayoquot changed
significantly and remained high (Phase 3) from 23 August 2012 to 23 December 2012. However, whether
there is a correlation between the onset of ETS and Phase 3 of our gas emission record cannot be proven
from the data currently available.

4.1.2. Oceanographic Variability

We observed not only short-term variations in gas emission activity in the order of a few hours to a few
days, but also detected long-period changes lasting several months. Such changes, as described in the
main three phases of activity, may be related to long-period variations of oceanographic conditions around
the cold seep site. Several phenomena are known in the area of our study that could exert long-period
changes to the environmental conditions affecting gas emission, including seasonal storms, seasonal
upwelling, climate-phenomena such as El Nino, or Pacific decadal oscillations (PDO).

The west coast off Vancouver Island is affected by a seasonal change in storm activity, with the typical storm
season lasting through the winter months from October to April. The storm activity is easily detected on the
BPRs as additional pressure forcing (see e.g., Figure 5). The storms are associated with a large variation in
surface wave heights, similar in magnitude to the tidal forcing, but associated with a much higher temporal
frequency and shorter wavelengths. However, we did not notice a relation between gas emission activity to
the entire period of winter storms or individual storm events.

Seasonal changes in the bottom temperature and bottom current conditions may be linked to the seasonal
upwelling occurring on the West coast off Vancouver Island [e.g., Thompson, 1981]. During the upwelling
events, cold and nutrient-rich water from intermediate-depths (100-300 m) reaches the surface and results in
increased biological productivity in coastal regions. This upwelling and shift in near-surface oceanographic
conditions typically occurs in the summer months (June—August) off Vancouver Island. Yet, during this period,
we observed two different general activities of gas emissions (Figure 5): in June-August 2012, the system
showed variable gas emission activity (Phase 1), whereas over the same period in 2013, no gas emission was
seen (Phase 3). As upwelling is a dominantly wind-driven phenomenon, upwelling varies in strength
[Bylhouwer et al., 2013] on annual to decadal time-scales. Such variation may also be linked to changes in
surface-water temperature influenced by the Pacific Decadal Oscillation [Mantua and Hare, 2002] or other
climate-phenomena such as El Nino [Bylhouwer et al., 2013]. However, our study is too short for any conclusive
analysis on such long-period variations in oceanographic conditions off Vancouver Island but possible correla-
tions cannot be excluded.
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Observations of gas emission triggered by falling tidal pressure have been described in the literature earlier,
mainly at very shallow marine and lacustrine environments. For example, Boles et al. [2001] showed with
gas flux data over 9 months that marine seeps at Coal Oil Point in 67 m water depth are tidally controlled.
Bubble ebullition at Cape Lookout Bight (North Carolina) is also assumed to be triggered by low-tide hydro-
static pressure release [Martens and Val Klump, 1980]. And in a recently published study by Scandella et al.
[2016] the authors confirmed that bubble ebullition in Upper Mystic Lake (Massachusetts) is strongly epi-
sodic and largely controlled by hydrostatic pressure using the same multibeam sonar device we used in this
study. Scandella et al. [2011] propose that methane transport in lake sediments is controlled by dynamic
conduits, which dilate and release gas as the falling hydrostatic pressure and tested their model against a 4
month record of hydrostatic load and methane flux in Upper Mystic Lake. Shallow sites have often been the
preferred in focus due to their easier accessibility and because methane fluxes from shallow sites are more
favorable to contribute to the atmospheric methane inventory. In order to evaluate the role of Siberian
thaw lakes as a positive feedback effect on climate warming, Walter et al. [2006] also investigated the vari-
ability of methane fluxes and stated that methane ebullition was triggered by falling hydrostatic pressure.

Nevertheless it has been proposed that tides have an influence also on seep sites at deep-water ocean set-
tings, e.g. at Hydrate Ridge [Torres et al, 2002; Tryon et al., 1999] based on intermittent observations.
Kannberg et al. [2013] could image flare intensity during repeated surveys, thus prolonging the observation
timespan, but the results seemed not to correlate with tides, beside some bubble burst occurring during
falling tides. They therefore suggested that even longer time series are needed to resolve the question
whether tides are the primary factor modulating the bubble flux at Hydrate ridge.

4.2, Gas Emission Intensity During A Tidal Cycle
At Clayoquot Slope, not only gas emission activation seems to be controlled by the tidal pressure but also
the emission intensity. Analyzing the flare intensity time series resulted a period of 12.4 h, which is identical
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Figure 9. Schematic view of the two main processes affecting the gas activity during the falling tidal pressure. (a) Hydrostatic load (o) and

effective tensile strength (T) are larger than the gas pressure in the sediments. Sediments are saturated with methane. (b) Due to decreas-

ing hydrostatic load, the sediment depth where gas pressure equals ¢ + T increases and shallower bubbles are released into the water col-
umn. Simultaneously, solubility increase leading to exsolution and enrichment of gas bubbles in the pore space.

to the period of the dominant semidiurnal lunar tidal mode M2 and has been identified also in the BPR
record available for this study. The results indicate that gas emission intensity varies also during periods of
on-going gas escape as best observed in Phase 2 (Figure 6). Turning points of the mean backscatter values
representing relative gas emission intensity correlate with decreasing bottom pressure and accordingly fall-
ing tides. Similar to flare onsets during periods of alternating activity, bubble emissions start slowly to
increase when pressure is lowest until a certain pressure value is reached during subsequent rising tide.

The main reason for bubble ebullition is thought to be the hydrostatic pressure variation during the tidal
cycle. A hydrostatic pressure drop means that the total load on the bubbles decreases and that the total
internal bubble pressure might become greater than the sum of the total load and the fracture resistance
of the sediment, which would result in migrating bubbles though fracturing [Boudreau, 2012]. Although
Boudreau [2012] admittedly do not believe that pressure changes have a major effect on formation of the
initial bubbles in sediments, hydrostatic pressure drops seem to facilitate subsequent bubble flux, i.e., by
reopening preexisting bubble conduits [Scandella et al., 2011]. The model presented by Scandella et al.
[2011] illustrates the relation of water level drop and the depth of active gas bubble activation through con-
duits. Gas bubbles trapped in the shallow sediments are frequently released down to a certain depth that is
dependent on the hydrostatic tidal pressure (Figure 9). Gas is released when the gas pressure (Pg) equals
the vertical stress (o, by hydrostatic load and bulk sediment weight) together with the effective tensile
strength (T, depending on the sediment composition and increasing with depth due to compaction). Tidally
induced pore pressure changes has been further shown to be a function of depth and sediment composi-
tion and especially the presence of free gas effects tidally induced pore pressure variations and seafloor dis-
placements [Wang and Davies, 1996; Wang et al., 1998]. Another unknown and complicating factor would
be the formation and dissociation of gas hydrates in the shallow sediments due to uprising and temporarily
trapped gas. Gas hydrate formation has been visually documented to form around the emanating bubbles
when collected for sampling, but it could not be proven if hydrates form also within the shallow sediments
in our study site around the sonar installation. However, in case of gas hydrate formation in sediments, we
assume that a pressure decrease would facilitate their destabilization and therefore enhance the effect of
increasing bubble ebullition starting at low tides.

An additional but probably minor contribution on the bubble flux variability could be bubble exsolution
from the pore water influenced by changing pressure and temperature during the tidal cycle (Figure 9). The
solubility of methane varies with the temperature and pressure changes that have been measured at Clayo-
quot Slope. Using the model by Duan and Mau [2006] provided online (http://models.kl-edi.ac.cn/models/
ch4-sea/), we quantified the differences by taking the low tide and high tide pressure values and the typical
temperature variation during the tidal cycle into account. The pressure difference of 2 dbar results in a shift
of solubility of about 0.00018 mol kg™, and in combination with the increase of 0.1°C with falling tides, the
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Figure 10. Schematic model of the long-term cycle of gas emission activity in relation to the three phases we defined from our data (example
plots as shown in Figure 6) offshore Vancouver Island. Upward migrating methane fuels the pore space in the sediments (white shaded areas)
and is frequently emitted into the hydrosphere in form of bubbles with intensities depending on the location within this cycle of phases.

difference in solubility amounts 0.0004 mol kg~". This value is probably rather an overestimation, as the
temperature was measured in the bottom water and presumably reduced in the subsurface. Lapham et al.
[2013] measured in the nearby Bubbly Gulch methane saturation values around 65 nM in the sediments.
Subsequently, a 1 m?of saturated sediment deposit would exsolve about 0.18 mol using the more conserva-
tive estimation (or 0.4 mol including the maximum temperature difference), which would equal around
30 mL methane as gas bubbles due to the tidal effect by assuming an impact down to 1 mbsf. Such a vol-
ume would be equal to ~170 gas bubbles of a typical bubble-size distribution. Even assuming a very weak
gas bubble emission site, 170 bubbles would be released within seconds to minutes, but could not sustain
continuous bubble streams over hours as visible in our sonar data. Although limited by simplification and
assumptions, we hypothesize that the process of exsolution may contribute to, but not dominantly control
the bubble flux variability observed at our study site at Clayoquot Slope.

4.3. A Variable Gas System At Clayoquot Slope
Our results of the gas emission time-series indicate three different phases of gas emission activity over 1
year. We hypothesize a general pattern of gas release controlled by various factors that include:

1. A steady connection of the gas reservoir with the subbottom and the absence of a shallow seal that
could trap gas temporarily;

2. Constant microbial production rate of methane over short-time periods (hours to weeks) in the sediment
column resulting in a steady source of gas;

3. Transient patterns, where the depth of gas mobilization is affected by pressure changes from short-
period changes by tidal influences and just the very shallow subsurface is filling up with subsequent
migrating gas between the tidal cycles;
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4. Transient patterns from long-period changes (seasonal or decadal) of oceanographic conditions (e.g.,
PDO or upwelling) that mostly impact the temperature of the shallow subseafloor system and in turn
may affect methane solubility and/or microbial activity; and

5. Transient patterns from long-period changes in tectonic forcing (e.g., ETS) that may contribute through
additional gas migration from depth or by changing the stress state within the sediments.

A conceptual model is presented in Figure 10, illustrating a circle of the three different phases observed in
our data. Phase 3 as the least active phase only emits gas bubbles for short-time periods during falling tides
if already enough gas accumulated in the very shallow subsurface sediments. The more the subsurface
becomes filled up with gas, the longer the active periods last (Phase 1). With on-going fueling, the active
periods starting with falling tides do not empty the pore spaces of the shallow sediments until the next fall-
ing tidal stage, hence, gas bubbles are emitted (albeit with varying intensities) continuously (Phase 1 and 2).
In Phase 2, the system is actively degassing throughout, until gas escape outpaces subsurface fueling and
the circle starts over again with a transient pattern (Phase 3).

5. Conclusions

Observations of gas emission activity over 1 year at a cold seep site offshore Vancouver Island revealed a
predominant tidal influence on seep activity. Analysis of the flare intensity time series resulted in a frequen-
cy identical to the semidiurnal lunar tidal mode M2. Furthermore, a coincidence of the onset of gas emis-
sion activity was found to be with falling tides when hydrostatic pressure decreases. We postulate a system
for Clayoquot slope where gas emission is controlled on short time scales (hours to days) by tides, but also
by long-period variations of the surrounding oceanographic regime (months to possibly years). Our 1 year
observation shows that the same seep site can be either extremely active with almost continuous gas
release, or very quiet with only minor short bursts of gas emissions. It shows that short-duration acoustic
imaging from a research vessel, most likely yields a nonrepresentative snap shot of the entire system. Defin-
ing gas fluxes from such systems is therefore extremely challenging and although highly desirable, estimat-
ing a total carbon flux from the seafloor to the ocean at this (or any other) site is to be taken with caution
and associated with a large uncertainty. The next increment of the long-term sonar installation within NEP-
TUNE, however, will allow for quantitative time series including absolute values as soon as additional data
for calibrating the system is available. Our data presented in this study showing relative intensity time
series, already indicate that gas flux estimates will vary by orders of magnitude depending whether the flux
is defined during times of high activity (Phase 2) or overall low and/or intermittent activity (Phases 1 and 3).

Additional long-term monitoring at similar sites and for longer time periods are required to help reduce
overall uncertainty in the question how much carbon is input to the world’s ocean and thus may impact
global questions such as ocean acidification or changes during ocean warming.
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