30 research outputs found

    Models of the formation of the planets in the 47 UMa system

    Get PDF
    Formation of planets in the 47 UMa system is followed in an evolving protoplanetary disk composed of gas and solids. The evolution of the disk is calculated from an early stage, when all solids, assumed to be high-temperature silicates, are in the dust form, to the stage when most solids are locked in planetesimals. The simulation of planetary evolution starts with a solid embryo of ~1 Earth mass, and proceeds according to the core accretion -- gas capture model. Orbital parameters are kept constant, and it is assumed that the environment of each planet is not perturbed by the second planet. It is found that conditions suitable for both planets to form within several Myr are easily created, and maintained throughout the formation time, in disks with α0.01\alpha \approx 0.01. In such disks, a planet of 2.6 Jupiter masses (the minimum for the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in \~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer planet) may be formed at 3.95 AU from the star in about the same time. The formation of planets is possible as a result of a significant enhancement of the surface density of solids between 1.0 and 4.0 AU, which results from the evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Interaction of massive stars with their surroundings

    Full text link
    Due to their short lifetimes but their enormous energy release in all stages of their lives massive stars are the major engines for the comic matter circuit. They affect not only their close environment but are also responsible to drive mass flows on galactic scales. Recent 2D models of radiation-driven and wind-blown HII regions are summarized which explore the impact of massive stars to the interstellar medium but find surprisingly small energy transfer efficiencies while an observable Carbon self-enrichment in the Wolf-Rayet phase is detected in the warm ionized gas. Finally, the focus is set on state-of-the-art modelling of HII regions and its present weaknesses with respect to uncertainties and simplifications but on a perspective of the requested art of their modelling in the 21st century.Comment: 7 pages, 3 fig.s, to be published in IAU Symp. No. 252, "The art of modelling stars in the 21st century", L. Deng & K.L. Chang (eds.), 2008, invited tal

    Formation of giant planets around stars with various masses

    Get PDF
    We examine the predictions of the core accretion - gas capture model concerning the efficiency of planet formation around stars with various masses. First, we follow the evolution of gas and solids from the moment when all solids are in the form of small grains to the stage when most of them are in the form of planetesimals. We show that the surface density of the planetesimal swarm tends to be higher around less massive stars. Then, we derive the minimum surface density of the planetesimal swarm required for the formation of a giant planet both in a numerical and in an approximate analytical approach. We combine these results by calculating a set of representative disk models characterized by different masses, sizes, and metallicities, and by estimating their capability of forming giant planets. Our results show that the set of protoplanetary disks capable of giant planet formation is larger for less massive stars. Provided that the distribution of initial disk parameters does not depend too strongly on the mass of the central star, we predict that the percentage of stars with giant planets should increase with decreasing stellar mass. Furthermore, we identify the radial redistribution of solids during the formation of planetesimal swarms as the key element in explaining these effects.Comment: Accepted for publication in A&A. 9 pages, 9 figure

    Formation of giant planets in disks with different metallicities

    Full text link
    We present the first results from simulations of processes leading to planet formation in protoplanetary disks with different metallicities. For a given metallicity, we construct a two-dimensional grid of disk models with different initial masses and radii (M0M_0, R0R_0). For each disk, we follow the evolution of gas and solids from an early evolutionary stage, when all solids are in the form of small dust grains, to the stage when most solids have condensed into planetesimals. Then, based on the core accretion - gas capture scenario, we estimate the planet-bearing capability of the environment defined by the final planetesimal swarm and the still evolving gaseous component of the disk. We define the probability of planet-formation, PpP_p, as the normalized fractional area in the (M0M_0, logR0\log R_0) plane populated by disks that have formed planets inside 5 AU. With such a definition, and under the assumption that the population of planets discovered at RR << 5 AU is not significantly contaminated by planets that have migrated from RR >> 5 AU, our results agree fairly well with the observed dependence between the probability that a star harbors a planet and the star's metal content. The agreement holds for the disk viscosity parameter α\alpha ranging from 10310^{-3} to 10210^{-2}, and it becomes much poorer when the redistribution of solids relative to the gas is not allowed for during the evolution of model disks.Comment: Accepted for publication in A&A. 6 pages, 6 figure

    The anomalous accretion disk of the Cataclysmic Variable RW Sextantis

    Full text link
    Synthetic spectra covering the wavelength range 900\AA~to 3000\AA~provide an accurate fit, established by a χν2{\chi}_{\nu}^2 analysis, to a combined observed spectrum of RW Sextantis. Two separately calibrated distances to the system establish the synthetic spectrum comparison on an absolute flux basis but with two alternative scaling factors, requiring alternative values of M˙\dot{M} for final models. Based on comparisons for a range of M˙\dot{M} values, the observed spectrum does not follow the standard model. Rather than the exponent 0.25 in the expression for the radial temperature profile, a value close to 0.125 produces a synthetic spectrum with an accurate fit to the combined spectrum. A study of time-series FUSEFUSE spectra shows that a proposed warped or tilted disk is not supported by the data; an alternative proposal is that an observed non-axisymmetric wind results from an interaction with the mass transfer stream debris.Comment: 56 pages, 15 figures, 11 tables. Accepted for The Astrophysical Journa

    Reconstructing Cosmic Peculiar Velocities from the Mildly Nonlinear Density Field

    Full text link
    We present a numerical study of the cosmic density vs. velocity divergence relation (DVDR) in the mildly non-linear regime. We approximate the dark matter as a non-relativistic pressureless fluid, and solve its equations of motion on a grid fixed in comoving coordinates. Unlike N-body schemes, this method yields directly the volume-averaged velocity field. The results of our simulations are compared with the predictions of the third-order perturbation theory (3PT) for the DVDR. We investigate both the mean `forward' relation (density in terms of velocity divergence) and the mean `inverse' relation (velocity divergence in terms of density), with emphasis on the latter. On scales larger than about 20 megaparsecs, our code recovers the predictions of 3PT remarkably well, significantly better than recent N-body simulations. On scales of a few megaparsecs, the DVDR predicted by 3PT differs slightly from the simulated one. In particular, approximating the inverse DVDR by a third-order polynomial turns out to be a poor fit. We propose a simple analytical description of the inverse relation, which works well for mildly non-linear scales.Comment: 9 pages, 7 figures (9 ps files), mn.st

    An alternative look at the snowline in protoplanetary disks

    Full text link
    We have calculated an evolution of protoplanetary disk from an extensive set of initial conditions using a time-dependent model capable of simultaneously keeping track of the global evolution of gas and water-ice. A number of simplifications and idealizations allows for an embodiment of gas-particle coupling, coagulation, sedimentation, and evaporation/condensation processes. We have shown that, when the evolution of ice is explicitly included, the location of the snowline has to be calculated directly as the inner edge of the region where ice is present and not as the radius where disk's temperature equals the evaporation temperature of water-ice. The final location of the snowline is set by an interplay between all involved processes and is farther from the star than implied by the location of the evaporation temperature radius. The evolution process naturally leads to an order of magnitude enhancement in surface density of icy material.Comment: Accepted for publication in A&A. 8 pages, 4 figure

    Evolution of gaseous disk viscosity driven by supernova explosion. II. Structure and emissions from star-forming galaxies at high redshift

    Full text link
    (Abridged) High redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics that are 1) high viscosity excited by SNexp can efficiently transport the gas from 10kpc to 1\sim 1kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; 2) starbursts trigger SMBH activity with a lag 108\sim 10^8yr depending on star formation rates, prompting the joint evolution of SMBHs and bulges; 3) the velocity dispersion is as high as \sim 100~\kms in the gaseous disk. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis (GALAXEV) and CLOUDY to calculate emission line ratios of Hα\alpha, Hβ\beta, \OIII and \NII, and Hα\alpha brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star forming galaxies and the observed relation between turbulent velocity and the Hα\alpha brightness. We successfully apply the present model to BX 389 and BX 482 observed in SINS highz-z sample, which are bulge and disk-dominated, respectively. High viscosity excited by SNexp is able to efficiently transport the gas into a bulge to maintain high star formation rates, or, to form a stellar ring close enough to the bulge so that it immigrates into the bulge of its host galaxy. This leads to a fast growing bulge. Implications and future work of the present models have been extensively discussed for galaxy formation.Comment: Accepted by ApJ; 22 page in emulateapj, 16 color figure

    2-D models of layered protoplanetary discs: I. The ring instability

    Full text link
    In this work we use the radiation hydrodynamic code TRAMP to perform a two-dimensional axially symmetric model of the layered disc. Using this model we follow the accumulation of mass in the dead zone due to the radially varying accretion rate. We found a new type of instability which causes the dead zone to split into rings. This "ring instability" works due to the positive feedback between the thickness of the dead zone and the mass accumulation rate. We give an analytical description of this instability, taking into account non-zero thickness of the dead zone and deviations from the Keplerian rotational velocity. The analytical model agrees reasonably well with results of numerical simulations. Finally, we speculate about the possible role of the ring instability in protoplanetary discs and in the formation of planets.Comment: 9 pages, 5 figures, accepted for publication in MNRA
    corecore