15 research outputs found

    The anti-bacterial iron-restriction defence mechanisms of egg white; the potential role of three lipocalin-like proteins in resistance against Salmonella

    Get PDF
    Salmonella enterica serovar Enteritidis (SE) is the most frequently-detected Salmonella in foodborne outbreaks in the European Union. Among such outbreaks, egg and egg products were identified as the most common vehicles of infection. Possibly, the major antibacterial property of egg white is iron restriction, which results from the presence of the iron-binding protein, ovotransferrin. To circumvent iron restriction, SE synthesise catecholate siderophores (i.e. enterobactin and salmochelin) that can chelate iron from host iron-binding proteins. Here, we highlight the role of lipocalin-like proteins found in egg white that could enhance egg-white iron restriction through sequestration of certain siderophores, including enterobactin. Indeed, it is now apparent that the egg-white lipocalin, Ex-FABP, can inhibit bacterial growth via its siderophore-binding capacity in vitro. However, it remains unclear whether ex-FABP performs such a function in egg white or during bird infection. Regarding the two other lipocalins of egg white (Cal-γ and α-1-glycoprotein), there is currently no evidence to indicate that they sequester siderophores

    The calcified eggshell matrix proteome of a songbird, the zebra finch (Taeniopygia guttata)

    Full text link

    Digestion dynamics in broilers fed rapeseed meal

    No full text
    Abstract Rapeseed proteins are described to be poorly digestible in chickens. To further identify some molecular locks that may limit their use in poultry nutrition, we conducted a proteomic study on the various chicken digestive contents and proposed an integrative view of the proteins recruited in the crop, proventriculus/gizzard, duodenum, jejunum, and ileum for digestion of rapeseed by-products. Twenty-seven distinct rapeseed proteins were identified in the hydrosoluble fraction of the feed prior ingestion. The number of rapeseed proteins identified in digestive contents decreases throughout the digestion process while some are progressively solubilized in the most distal digestive segment, likely due to a combined effect of pH and activity of specific hydrolytic enzymes. Fifteen chicken proteins were identified in the hydrosoluble proventriculus/gizzard content, including chymotrypsin-like elastase and pepsin. Interestingly, on the 69 distinct proteins identified in duodenum, only 9 were proteolytic enzymes, whereas the others were associated with homeostasis, and carbohydrate, lipid, vitamin and hormone metabolisms. In contrast, chicken proteins identified in jejunal and ileal contents were mostly proteases and peptidases. The present work highlights the relevance of using integrative proteomics applied to the entire digestive tract to better appreciate the protein profile and functions of each digestive segment
    corecore