412 research outputs found

    Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2

    Get PDF
    Excised 20-d-old sunflower roots (Helianthus annuus L. cv. Sun-Gro 380) with different Ca2+ status were used to study the effects of root Ca2+ status and abscisic acid (ABA) on the exudation rate (Jv), the hydraulic conductivity of the root (Lpr), the flux of exuded Ca2+ (JCa), and the gradient of rosmotic pressure between the xylem and the external medium. Jv and Lpr increased in direct proportion to the Ca2+ status of the root. Addition of ABA (4 µM) at the onset of exudation in the external medium made Jv and Lpr rise, and this effect also increased with the Ca2+ status. The effects of HgCl2 and its interaction with ABA on water transport in the root were also studied. Addition of HgCl2 (1 µM) 2 h after the onset of exudation in the external medium quickly inhibited Jv, independently of the presence of ABA in the root medium. The results recorded here point to the involvement of ABA and Ca2+ in the regulation of root water flow, as well as the existence of aquaporins in the cell membranes of sunflower roots.Ministerio de Educación y Cultura PB95–097

    2005-2017 Ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area

    Get PDF
    We analyzed 2005–2017 data sets on ozone (O3) concentrations in an area (the Vic Plain) frequently affected by the atmospheric plume northward transport of the Barcelona metropolitan area (BMA), the atmospheric basin of Spain recording the highest number of exceedances of the hourly O3 information threshold (180¿µg¿m-3). We aimed at evaluating the potential benefits of implementing local-BMA short-term measures to abate emissions of precursors. To this end, we analyzed in detail spatial and time variations of concentration of O3 and nitrogen oxides (NO and NO2, including OMI remote sensing data for the latter). Subsequently, a sensitivity analysis is done with the air quality (AQ) data to evaluate potential O3 reductions in the north of the BMA on Sundays compared with weekdays as a consequence of the reduction in regional emissions of precursors. The results showed a generalized decreasing trend for regional background O3 as well as the well-known increase in urban O3 and higher urban NO decreasing slopes compared with those of NO2. The most intensive O3 episodes in the Vic Plain are caused by (i) a relatively high regional background O3 (due to a mix of continental, hemispheric–tropospheric and stratospheric contributions); by (ii) intensive surface fumigation from mid-troposphere high O3 upper layers arising from the concatenation of the vertical recirculation of air masses; but also by (iii) an important O3 contribution from the northward transport/channeling of the pollution plume from the BMA. The high relevance of the local-daily O3 contribution during the most intense pollution episodes is clearly supported by the O3 (surface concentration) and NO2 (OMI data) data analysis. A maximum decrease potential (by applying short-term measures to abate emissions of O3 precursors) of 49¿µg¿O3¿m-3 (32¿%) of the average diurnal concentrations was determined. Structurally implemented measures, instead of episodically, could result in important additional O3 decreases because not only the local O3 coming from the BMA plume would be reduced, but also the recirculated O3 and thus the intensity of O3 fumigation in the plain. Therefore, it is highly probable that both structural and episodic measures to abate NOx and volatile organic compound (VOC) emissions in the BMA would result in evident reductions of O3 in the Vic PlainPeer ReviewedPostprint (author's final draft

    Regulation of durum wheat Na(+)/H (+) exchanger TdSOS1 by phosphorylation

    Get PDF
    We have identified a plasma membrane Na+/H+ exchanger from durum wheat, designated TdSOS1. Heterologous expression of TdSOS1 in a yeast strain lacking endogenous Na+ efflux proteins showed complementation of the Na+- and Li+-sensitive phenotype by a mechanism involving cation efflux. Salt tolerance conferred by TdSOS1 was maximal when co-expressed with the Arabidopsis protein kinase complex SOS2/SOS3. In vitro phosphorylation of TdSOS1 with a hyperactive form of the Arabidopsis SOS2 kinase (T/DSOS2∆308) showed the importance of two essential serine residues at the C-terminal hydrophilic tail (S1126, S1128). Mutation of these two serine residues to alanine decreased the phosphorylation of TdSOS1 by T/DSOS2∆308 and prevented the activation of TdSOS1. In addition, deletion of the C-terminal domain of TdSOS1 encompassing serine residues at position 1126 and 1128 generated a hyperactive form that had maximal sodium exclusion activity independent from the regulatory SOS2/SOS3 complex. These results are consistent with the presence of an auto-inhibitory domain at the C-terminus of TdSOS1 that mediates the activation of TdSOS1 by the protein kinase SOS2. Expression of TdSOS1 mRNA in young seedlings of the durum wheat variety Om Rabia3, using different abiotic stresses (ionic and oxidative stress) at different times of exposure, was monitored by RT–PCR.Peer Reviewe

    Organocatalytic Enantioselective Synthesis of α-Hydroxyketones through a Friedel−Crafts Reaction of Naphthols and Activated Phenols with Aryl- and Alkylglyoxal Hydrates

    Get PDF
    An efficient organocatalytic asymmetric synthesis of α-hydroxyketones has been developed. Quinine-derived thiourea catalyzed the enantioselective Friedel−Crafts alkylation of naphthols and activated phenols with aryl- and alkylglyoxal hydrates, providing the corresponding chiral α-hydroxyketones with high yields (up to 97%) and excellent enantioselectivities (up to 99% ee)

    Study of large-signal stability of an inverter-based generator using a Lyapunov function

    Get PDF
    This document analyses the large-signal stability for an inverter-based generator such as photovoltaic and wind power sources. The objective of this study is to determine the stability region taking into account the electrical and control signal of the generator. The generator uses the concept of the electrostatic machine for the model of the generator. Finally, the applied procedure to find the Lyapunov's function is the Popov method, which not only permits to generate a valid function but also to determine the stability region of the system.Postprint (author's final draft

    Role of SOS1 in potassium nutrition

    Get PDF
    Comunicación oral presentada al FESPB celebrado del 4-9 de julio, 2010, en Valencia, España.Peer reviewe

    Upstream kinases of plant SnRKs are involved in salt stress tolerance

    Get PDF
    Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.España, MINECO IO2015-70946-

    Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis

    Get PDF
    Kim, Woe-Yeon et al.--Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity and circadian clock control, and the SNF1-related protein kinase SOS2 functionally interact. In the absence of stress, the GI:SOS2 complex prevents SOS2- based activation of SOS1, the major plant Na+/H+-antiporter mediating adaptation to salinity. GI over-expressing, rapidly flowering, plants show enhanced salt sensitivity, whereas gi mutants exhibit enhanced salt tolerance and delayed flowering. Salt-induced degradation of GI confers salt tolerance by the release of the SOS2 kinase. The GISOS2 interaction introduces a higher order regulatory circuit that can explain in molecular terms, the long observed connection between floral transition and adaptive environmental stress tolerance in Arabidopsis.This research was supported by the Next-Generation BioGreen 21 Program (Systems and Synthetic Agrobiotech Center, no. PJ008025), a Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ007850), and the Ministry of Education, Science and Technology for the World Class University (WCU) program (R32-10148) from the Rural Development Administration, Republic of Korea, and by grant BIO2009-08641 financed by the Spanish Ministry of Science and Innovation and the FEDER program.Peer reviewe
    • …
    corecore