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Water transport in sunflower root systems:
effects of ABA, Ca2+ status and HgCl
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Abstract Peterson, 1998). When osmotic gradients are present, the
water flow is negligible in the apoplast (Quintero et al.,

Excised 20-d-old sunflower roots (Helianthus annuus
1998; Steudle and Peterson, 1998) and transport occurs

L. cv. Sun-Gro 380) with different Ca2+ status were mainly from cell to cell (Steudle and Frensch, 1989;
used to study the effects of root Ca2+ status and Steudle, 1994). In recent years, it has been shown that
abscisic acid (ABA) on the exudation rate (Jv), the membrane-integral proteins, or aquaporins, act as water-
hydraulic conductivity of the root (Lp

r
), the flux of specific channels (Chrispeels and Maurel, 1994; Maggio

exuded Ca2+ (J
Ca

), and the gradient of osmotic pres- and Joly, 1995). The presence of aquaporins in roots
sure between the xylem and the external medium. Jv (Yamamoto et al., 1991; Niemietz and Tyerman, 1997)
and Lp

r
increased in direct proportion to the Ca2+ suggests that radial flow of water could be mainly trans-

status of the root. Addition of ABA (4 mM) at the onset cellular (Chrispeels and Maurel, 1994; Maggio and Joly,
of exudation in the external medium made Jv and Lp

r 1995) and may be controlled by the opening or closing
rise, and this effect also increased with the Ca2+ of these water channels (Chrispeels and Maurel, 1994;
status. The effects of HgCl

2
and its interaction with Steudle and Henzler, 1995).

ABA on water transport in the root were also studied. The existence of a regulatory mechanism which controls
Addition of HgCl

2
(1 mM) 2 h after the onset of exuda- radial transport of water in the root has yet to be

tion in the external medium quickly inhibited Jv, inde- determined (Quintero et al., 1998). It is known that roots
pendently of the presence of ABA in the root medium. offer the greatest resistance to water flow (Weatherley,
The results recorded here point to the involvement of 1982), and that hydraulic conductivity of the root (Lpr)ABA and Ca2+ in the regulation of root water flow, may be affected by diverse forms of abiotic stress, such
as well as the existence of aquaporins in the cell as salinity (Munns and Passioura, 1984; Joly, 1989),
membranes of sunflower roots. anaerobiosis (Zhang and Tyerman, 1991), drought

(North and Nobel, 1991) or nutritional stress (Radin and
Key words: ABA, aquaporins, calcium, exudation rate, Matthews, 1989; Radin, 1990; Quintero et al., 1998).
Helianthus annuus, hydraulic conductivity, sunflower. Among the endogenous factors related to water flow

in plants, the role of abscisic acid (ABA) has received
most attention. The role of ABA in the regulation of rootIntroduction
water flow has yet to be firmly established, as experimental

Radial transport of water in the root occurs simultan- results have often been contradictory (Glinka, 1980;
eously via two parallel routes: cell to cell (including Fiscus, 1981; Markhart, 1984; BassiriRad and Radin,
symplastic and transcellular pathways) and apoplast 1992). In isolated sunflower roots, ABA appears to
(Steudle and Frensch, 1996; Steudle and Peterson, 1998). promote exudation (Glinka, 1980; Fournier et al., 1987;
The predominance of one route over the other depends Quintero et al., 1998), due to its effect on both the
on species, extent of root development and whether water hydraulic conductivity of the root (Glinka, 1980; Quintero
absorption is determined by a hydrostatic or an osmotic et al., 1998) and the release of ions into the xylem vessels

(Glinka, 1980). In contrast, in bean root systems, usinggradient (Steudle and Frensch, 1996; Steudle and
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2.5 mM CaCl2 (control plants) or without calcium (low-Ca2+a pressure chamber to increase water flux through the
plants). The basic composition of this new solution was: 2.5 mMroots, no short-term effect of ABA was found on their
KNO3, 2.5 mM NaNO3, 0.5 mM KH2PO4, 1.0 mM MgSO4,hydraulic conductivity; and in the long-term, a decrease 12.5 mM H3BO3, 1.0 mM MnSO4, 1.0 mM ZnSO4, 0.25 mM

was even observed (Fiscus, 1981). CuSO4, 0.2 mM (NH4)6Mo7O24, and 10 mM Fe-ethylenediamine-
di-o-hydroxyphenylacetic acid. In the experiments with HgCl2,More is known about the role of ABA in regulating
the plants were continuously kept in standard nutrient solution.water flow in the shoot. ABA is synthesized in roots in
In all cases, NaOH was used to adjust the pH of the nutrientresponse to water stress conditions, producing various
solution to 5.5. In all assays, four plants were grown for each

effects in the shoot. One such effect is the opening of treatment.
outward K+ channels, the loss of turgor and closing of The plants were grown in the growth chamber for 15 d. The

nutrient solutions were continuously aerated using an air pump.stomata (Davies and Zhang, 1991; Chandler and
The volume was adjusted daily to 790 ml. The nutrient solutionsRobertson, 1994). It has recently been reported that ABA
were renewed at day 7 and, in experiments with HgCl2, alsoinduces an increase in the concentration of cytosolic Ca2+
the day before the exudation assays.

in guard cells (Gilroy et al., 1991; McAinsh et al., 1990,
1992), preceding the closing of stomata (McAinsh et al.,

Exudate collection1990). The concentration of cytosolic Ca2+ in guard cells
The exudation experiments were performed with 20-d-old plantsis essential for controlling the opening of the stomata
and were started 30 min after switching on the lights of the(MacRobbie, 1997; McAinsh et al., 1997), either through growth chamber. In the same flasks in which the plants had

its effect on various plasma membrane K+ channels grown, the nutrient solution was changed for a new solution
(Schroeder and Hagiwara, 1989) and the tonoplast (Ward according to the type of assay. Abscisic acid (4 mM, mixed

isomers, Sigma) and HgCl2 (1 mM) were added to this newand Schroeder, 1994) of guard cells, or on the ATPase of
solution: ABA at the onset of exudation and HgCl2 2 h afterH+ in the plasma membrane of these cells ( Kinoshita
the onset of exudation. Immediately after the change of solution,

et al., 1995). the plants were detopped 1 cm above the transition zone, and
Less is known about the effect of Ca2+ on water pieces of tightly fitting latex tubing were affixed to the cut

transport in the root system than in the shoot. It has stumps. The exudate from the xylem vessels was collected in
test tubes during 3, 4 or 6 h according to the type of assay;been reported that salinity decreases hydraulic conduc-
during this period, the external medium of the root wastivity in maize roots, and that the addition of extra
continuously aerated using an air pump, and kept at 25 °C. Thecalcium to the salinized media causes ameliorative effects volume of exudate collected was determined by measuring the

on hydraulic conductivity (Azaizeh and Steudle, 1991; difference of weight of the test tube before and after the
Azaizeh et al., 1992). collection period. The exudates were individually frozen and

stored at −20 °C. Afterwards, the roots were individuallyThe object of the present work was mainly to study
washed for 5 min in 150 ml of a cold 5 mM CaSO4 solutionthe effect of ABA and Ca2+ status on the water flow in
(5 °C) to allow exchange of the cell walls contents. Finally, thesunflower root systems. The aim was to know whether roots were also weighed, frozen and stored at −20 °C.

ABA and Ca2+ are involved in regulating water transport
across the root.

Other analyses

The osmotic pressure of the exudates and of the external
medium was determined by means of a thermocouple psychro-Materials and methods
meter (Decagon Devices, Inc., Pullman, WA, USA). The values
of hydraulic conductivity of the roots (Lpr) were calculatedPlant material and growth conditions
using:Sunflower seeds (Helianthus annuus L. cv. Sun-Gro 380,

Eurosemillas S.A., Córdoba, Spain) were surface-sterilized in Jv=ssrLpr (p
x
–po) (1)

0.5% (v/v) sodium hypochlorite for 1 min, and germinated in
the dark for 4 d at 28 °C in perlite moistened with 5 mM CaCl2. where Jv is the exudation rate; px and po are the osmotic
On the fourth day, the seedlings were put in a plant growth pressures of the exudate and the external medium, respectively;
chamber with a relative humidity between 60% and 80%, and ssr is the overall reflection coefficient of the root, the value
a day/night temperature of 22/18 °C, a photoperiod of 14 h of which is assumed to be unity (BassiriRad et al., 1991).
of light and a photosynthetic photon flux density of K+ and Ca2+ were determined by atomic absorption
350 mmol m−2 s−1 (fluorescent tubes, Sylvania cool-white spectrophotometry (Perkin Elmer 1100 B), either directly in the
VHO). The next day, the 5-d-old seedlings were transferred exudate or after extraction from the roots or shoots with a 10%
individually to glass flasks wrapped in aluminium foil. The acetic acid solution (Benlloch et al., 1989).
flasks contained 790 ml of a standard nutrient solution with the
following composition: 2.5 mM KCl, 2.5 mM Ca(NO3)2, Experimental design and statistical analysis1.0 mM MgSO4, 0.25 mM Ca(H2PO4)2, 12.5 mM H3BO3,1.0 mM MnSO4, 1.0 mM ZnSO4, 0.25 mM CuSO4, 0.2 mM A random experimental design was utilized in all cases. Linear

regressions were established between the Ca2+ status of the(NH4)6Mo7O24, and 10 mM Fe-ethylenediamine-di-o-hydroxy-
phenylacetic acid. root and every one of the hydraulic parameters (exudation rate,

hydraulic conductivity and osmotic pressure gradient), and alsoIn order to obtain plants with different Ca2+ levels, the
plants were transferred (without rinsing their roots) 24 h before with the Ca2+ flux in the xylem sap. In all cases, the analysis

of linear regression was significant (P<0.01).the exudation assay to a new nutrient solution with either
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Fig. 1. Effect of the Ca2+ status of the root and of ABA in the root medium on the exudation rate (A), the hydraulic conductivity of the root (B),
the Ca2+ flux of the xylem sap (C), and the osmotic pressure gradient between the xylem sap and the medium (D). Roots were exuding for 6 h in
a solution containing CaSO4 (0.1 mM), glucose (10 mM) and with (&) or without (%) ABA (4 mM ). In all cases, the analysis of linear regression
was significant (P<0.01).

Results hydraulic parameters and with the Ca2+ flux in the xylem
sap; results showed that as the Ca2+ level increased, the

Although calcium starvation for 24 h neither modified
exudation rate (Jv) also rose (Fig. 1A). Similarly, the

plant growth (data not shown) nor altered the nutritive
hydraulic conductivity of the root (Lpr) and the flux of

K+ status (Table 1), it reduced internal Ca2+ content,
exuded Ca2+ (JCa) rose in direct proportion to Ca2+

which was more marked in the root (Table 1). The Ca2+
concentration in the root (Fig. 1B,C). In contrast, the

level in the root affected the exudation process of isolated
osmotic pressure gradient, formed between the xylem and

roots exhibiting root pressure (Table 2). In roots with
the external medium, decreased in direct proportion to

low calcium levels, the exudation rate was inhibited (Jv)
Ca2+ concentration (Fig. 1D).

and the stimulating effect of ABA on exudation disap-
Addition of ABA (4 mM) at the onset of exudation

peared (Table 2).
produced various effects in the root (Fig. 1). The action

The Ca2+ status of the root was correlated with various

Table 2. Effect of the Ca2+ status of the root and of ABA in theTable 1. Shoot and root K+ and Ca2+ levels (expressed in mmol
root medium on the exudation rate (Jv) (expressed in ml g−1g−1 FW)
FW h−1)

The plants were grown for 14 d in standard nutrient solution, and for
1 d in other solution with either Ca2+ (control plants) or without Ca2+ Roots were exuding for 6 h in a solution containing CaSO4 (0.1 mM),

glucose (10 mM) and with (+) or without (−) ABA (4 mM). Values( low-Ca2+ plants) (see Materials and methods). Values are means of
four plants ±SE of the mean. are means of four roots ±SE of the mean.

Ca2+ Treatment Exudation rate (Jv)Treatment K+ Ca2+
Shoot Root Shoot Root Control −ABA 33.1±3.5

+ABA 47.6±5.3
Low-Ca2+ −ABA 25.3±1.8Control 148.7±1.4 118.4±2.0 33.6±0.9 2.4±0.1

Low-Ca2+ 151.1±2.4 115.1±2.1 27.6±1.3 1.4±0.1 +ABA 26.8±2.0
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In other experiments, the long-term effect of HgCl2
was studied. Results showed that 2 h after its addition to
the external medium of the roots, HgCl2 (1 mM) signific-
antly inhibited the exudation rate (Jv) and the hydraulic
conductivity of the root (Lpr) (Table 3).

Discussion

Our results suggest that Ca2+ and ABA are involved in
the regulation of water flow across the root. The extent
to which ABA enhanced water flow across the root
depended on the concentration of Ca2+ in the root: higher
concentrations of Ca2+ provided greater sensitivity to
ABA (Table 2; Fig. 1A). The effect of Ca2+ and ABA on
water flow in the root can be explained only by their
promotive effect on root hydraulic conductivity and not

Fig. 2. Effect of HgCl2 and of ABA in the root medium on the by changes in the osmotic pressure gradient between the
exudation rate (Jv). Roots were obtained from plants grown in standard xylem and the surrounding medium (Fig. 1). The possibil-nutrient solution for 15 d, and they were exuding for 3 h in fresh

ity that the effect of Ca2+ starvation on water flow in thestandard nutrient solution plus glucose (10 mM). ABA (4 mM) was
added to the root medium at the onset of exudation and HgCl2 (1 mM) root could be produced by injurious effects on root
2 h later. Control (#), ABA ($), HgCl2 (6), ABA plus HgCl2 (+). structure, have to be discarded. In these experiments,Values are means of four roots ±SE.

Ca2+ starvation was not severe for different reasons: (1)
when the plants were transferred to nutrient solutionof ABA on the exudation rate (Jv) and the hydraulic

conductivity of the root (Lpr) also depended on the without Ca2+, the plant roots were not rinsed, retaining
the apoplastic calcium; (2) the duration of starvation wasinternal Ca2+ concentration: as that Ca2+ concentration

increased, so did the effect of ABA, with the result that only 24 h. Furthermore, the assays with detached root
systems were always performed with Ca2+ in the sur-its action was greater in roots with higher Ca2+ concentra-

tions. Significant differences were recorded with respect rounding medium (CaSO4 0.1 mM ). In addition, Ca2+
starvation neither modified plant growth nor altered theto controls for concentrations above 2 mmol g−1 fr. wt.

(Fig. 1A, B). On the other hand, ABA had no significant nutritive K+ status (Table 1), which indicates that the
plants were not affected by serious disorders.effect on either the flux of exuded Ca2+ (JCa) or the

osmotic pressure gradient between the xylem and the The hydraulic conductivity of the root (Lpr) was calcu-
lated using equation 1. The value of ssr is controversial.external medium (Fig. 1C, D).

In other experiments, the short-term effect (1 h) of Several authors have assumed that ssr=1 (Fiscus, 1981;
BassiriRad et al., 1991; Quintero et al., 1998). However,HgCl2 on water transport in roots was studied with and

without ABA in the external medium (Fig. 2). In the other authors have reported that ssr values are sub-
stantially smaller than unity (Steudle and Frensch, 1996;presence of ABA (4 mM), the exudation rate (Jv) was

greater than in the control roots (Fig. 2). The addition Steudle and Peterson, 1998). In bean root systems, Fiscus
determined ssr=0.99, and ABA did not affect this valueof HgCl2 (1 mM) to the external medium of the root 2 h

after the onset of exudation had a rapid and dramatic (Fiscus, 1981). In excised maize roots, ssr values between
0.64 and 0.73 have been calculated (Azaizeh and Steudle,effect on the exudation rate (Jv) both in control and in

ABA-treated roots. These results showed that the inhibit- 1991), and these values were not significantly different in
roots with different calcium status. These findings indicateory effect of HgCl2 on the exudation rate (Jv) was similar

in the presence and in the absence of ABA (Fig. 2). that ssr does not change under the different experimental

Table 3. Effect of the HgCl
2

in the root medium on the exudation rate (Jv), the hydraulic conductivity of the root (Lp
r
), and the

osmotic pressure gradient between the xylem sap and the medium

Roots were obtained from plants grown in standard nutrient solution for 15 d, and they were exuding for 4 h in fresh solution plus glucose
(10 mM). HgCl2 (1 mM) was added 2 h after the onset of exudation. Values correspond at 2 h after treatment and are means of four roots ±SE of
the mean.

Treatment Jv Lpr Osmotic pressure gradient
(ml g−1 FW h−1) (ml g−1 FW h−1 MPa−1) (MPa)

Control 51.9±8.4 756.6±99.2 0.047±0.009
HgCl2 30.7±2.0 592.9±8.6 0.053±0.005
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conditions used in this work. It has been assumed here et al., 1999). Furthermore, in this work, at the end of the
short-term experiments with Hg2+, roots looked healthythat ssr=1 in order to calculate Lpr, but even if ssr were

smaller than unity, it would not affect the conclusions and their K+ status was similar in both root types
(124.8±3.3 and 129.3±1.6 in treated and control roots,about the effect of different treatments on Lpr. How-

ever, it is possible that the values of Lpr could be respectively). In long-term experiments, the results were
similar. Therefore, it is considered that the Hg2+ concen-underestimated.

Curiously, findings elsewhere have reported that ABA tration and exposure durations used here only seemed to
affect water transport through roots.and Ca2+ are involved in regulating stomatal opening

and closing. Under stress conditions, ABA inhibits the These results suggest that aquaporins were present in
sunflower root cell membranes and were involved intranspiration across the stomata ( Kearns and Assmann,

1993); this action is preceded by an increase in cytosolic regulating water flow in the root when, as in this experi-
ment, root pressure produced water flow in the radicleCa2+ concentration in occlusive cells (McAinsh et al.,

1990). In the present study, ABA and Ca2+ promoted system (Quintero et al., 1998). The inhibitory effect of
HgCl2 was similar in both the presence and the absencewater flow across the root, seemingly contrasting with its

effect on the transpiration across the stomata: in the root, of ABA (Fig. 2), suggesting that ABA and aquaporins
are independently involved in the regulation of water flowhigh levels of Ca2+ enhanced water flow; in the shoot,

high Ca2+ contents in occlusive cells contributed to in the root.
stomatal closure. The apparently contradictory effects in
the root and in the shoot have also been described for
K+: stomatal closure, and the subsequent inhibition of Acknowledgement
the transpiration across the stomata, was accompanied
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