139 research outputs found

    Effect of cyhalothrin on Ehrlich tumor growth and macrophage activity in mice

    Get PDF
    Cyhalothrin, a pyrethroid insecticide, induces stress-like symptoms, increases c-fos immunoreactivity in the paraventricular nucleus of the hypothalamus, and decreases innate immune responses in laboratory animals. Macrophages are key elements in cellular immune responses and operate at the tumor-host interface. This study investigated the relationship among cyhalothrin effects on Ehrlich tumor growth, serum corticosterone levels and peritoneal macrophage activity in mice. Three experiments were done with 10 experimental (single gavage administration of 3.0 mg/kg cyhalothrin daily for 7 days) and 10 control (single gavage administration of 1.0 mL/kg vehicle of cyhalothrin preparation daily for 7 days) isogenic BALB/c mice in each experiment. Cyhalothrin i) increased Ehrlich ascitic tumor growth after ip administration of 5.0 x 106 tumor cells, i.e., ascitic fluid volume (control = 1.97 ± 0.39 mL and experimental = 2.71 ± 0.92 mL; P < 0.05), concentration of tumor cells/mL in the ascitic fluid (control = 111.95 ± 16.73 x 106 and experimental = 144.60 ± 33.18 x 106; P < 0.05), and total number of tumor cells in the ascitic fluid (control = 226.91 ± 43.22 x 106 and experimental = 349.40 ± 106.38 x 106; P < 0.05); ii) increased serum corticosterone levels (control = 200.0 ± 48.3 ng/mL and experimental = 420.0 ± 75.5 ng/mL; P < 0.05), and iii) decreased the intensity of macrophage phagocytosis (control = 132.3 ± 19.7 and experimental = 116.2 ± 4.6; P < 0.05) and oxidative burst (control = 173.7 ± 40.8 and experimental= 99.58 ± 41.7; P < 0.05) in vitro in the presence of Staphylococcus aureus. These data provide evidence that cyhalothrin simultaneously alters host resistance to Ehrlich tumor growth, hypothalamic-pituitary-adrenocortical (HPA) axis function, and peritoneal macrophage activity. The results are discussed in terms of data suggesting a link between stress, HPA axis activation and resistance to tumor growth.FAPESPCNP

    A social-ecological approach to identify and quantify biodiversity tipping points in South America’s seasonal dry ecosystems

    Get PDF
    ropical dry forests and savannas harbour unique biodiversity and provide critical ES, yet they are under severe pressure globally. We need to improve our understanding of how and when this pressure provokes tipping points in biodiversity and the associated social-ecological systems. We propose an approach to investigate how drivers leading to natural vegetation decline trigger biodiversity tipping and illustrate it using the example of the Dry Diagonal in South America, an understudied deforestation frontier. The Dry Diagonal represents the largest continuous area of dry forests and savannas in South America, extending over three million km² across Argentina, Bolivia, Brazil, and Paraguay. Natural vegetation in the Dry Diagonal has been undergoing large-scale transformations for the past 30 years due to massive agricultural expansion and intensification. Many signs indicate that natural vegetation decline has reached critical levels. Major research gaps prevail, however, in our understanding of how these transformations affect the unique and rich biodiversity of the Dry Diagonal, and how this affects the ecological integrity and the provisioning of ES that are critical both for local livelihoods and commercial agriculture.Fil: Thonicke, Kirsten. Institute for Climate Impact Research ; AlemaniaFil: Langerwisch, Fanny. Institute for Climate Impact Research ; Alemania. Czech University of Life Sciences Prague; República ChecaFil: Baumann, Matthias. Humboldt Universität zu Berlin; Alemania. Technische Universitat Carolo Wilhelmina Zu Braunschweig.; AlemaniaFil: Leitão, Pedro J.. Humboldt Universität zu Berlin; Alemania. Technische Universitat Carolo Wilhelmina Zu Braunschweig.; AlemaniaFil: Václavík, Tomáš. Helmholtz Centre for Environmental Research; Alemania. Palacký University Olomouc; República ChecaFil: Alencar, Anne. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Simões, Margareth. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); BrasilFil: Scheiter, Simon. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA); Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Langan, Liam. Senckenberg Biodiversity and Climate Research Centre; AlemaniaFil: Bustamante, Mercedes. Universidade do Brasília; BrasilFil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Instituto de Ecología Regional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Hirota, Marina. Universidade Federal de Santa Catarina; Brasil. Universidade Estadual de Campinas; BrasilFil: Börner, Jan. Universitat Bonn; AlemaniaFil: Rajao, Raoni. Universidade Federal de Minas Gerais; BrasilFil: Soares Filho, Britaldo. Universidade Federal de Minas Gerais; BrasilFil: Yanosky, Alberto. Consejo Nacional de Ciencia y Tecnología; ParaguayFil: Ochoa Quinteiro, José Manuel. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; ColombiaFil: Seghezzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: de la Vega Leiner, Anne Cristina. Universität Greifswald; Alemani

    Molecular Cytogenetic Analysis of the European Hake Merluccius merluccius (Merlucciidae, Gadiformes): U1 and U2 snRNA Gene Clusters Map to the Same Location

    Get PDF
    The European hake (Merluccius merluccius) is a highly valuable and intensely fished species in which a long-term alive stock has been established in captivity for aquaculture purposes. Due to their huge economic importance, genetic studies on hakes were mostly focused on phylogenetic and phylogeographic aspects; however chromosome numbers are still not described for any of the fifteen species in the genus Merluccius. In this work we report a chromosome number of 2n = 42 and a karyotype composed of three meta/submetacentric and 18 subtelo/telocentric chromosome pairs. Telomeric sequences appear exclusively at both ends of every single chromosome. Concerning rRNA genes, this species show a single 45S rDNA cluster at an intercalary location on the long arm of subtelocentric chromosome pair 12; the single 5S rDNA cluster is also intercalary to the long arm of chromosome pair 4. While U2 snRNA gene clusters map to a single subcentromeric position on chromosome pair 13, U1 snRNA gene clusters seem to appear on almost all chromosome pairs, but showing bigger clusters on pairs 5, 13, 16, 17 and 19. The brightest signals on pair 13 are coincident with the single U2 snRNA gene cluster signals. Therefore, the use of these probes allows the unequivocal identification of at least 7 of the chromosome pairs that compose the karyotype of Merluccius merluccius thus opening the way to integrate molecular genetics and cytological data on the study of the genome of this important species.Versión del editor4,411

    Effects of dietary supplementation with a laminarin-rich extract on the growth performance and gastrointestinal health in broilers

    Get PDF
    Restriction in antimicrobial use in broiler chicken production is driving the exploration of alternative feed additives that will support growth through the promotion of gastrointestinal health and development. The objective of this study was to determine the effects of dietary inclusion of laminarin on growth performance, the expression of nutrient transporters, markers of inflammation and intestinal integrity in the small intestine and composition of the caecal microbiota in broiler chickens. Two-hundred-and-forty day-old male Ross 308 broiler chicks (40.64 (3.43 SD) g) were randomly assigned to: (T1) basal diet (control); (T2) basal diet + 150 ppm laminarin; (T3) basal diet + 300 ppm laminarin (5 bird/pen; 16 pens/treatment). The basal diet was supplemented with a laminarin-rich Laminaria spp. extract (65% laminarin) to achieve the two laminarin inclusion levels (150 and 300 ppm). Chick weights and feed intake was recorded weekly. After 35 days of supplementation, one bird per pen from the control and best performing (300 ppm) laminarin groups were euthanized. Duodenal, jejunal and ileal tissues were collected for gene expression analysis. Caecal digesta was collected for microbiota analysis (high-throughput sequencing and QPCR). Dietary supplementation with 300 ppm laminarin increased both final body weight (2033 vs. 1906 ± 30.4, P < 0.05) and average daily gain (62.3 vs. 58.2 ± 0.95, P < 0.05) compared to the control group and average daily feed intake (114.1 vs. 106.0 and 104.5 ± 1.77, P < 0.05) compared to all other groups. Laminarin supplementation at 300 ppm increased the relative and absolute abundance of Bifidobacterium (P < 0.05) in the caecum. Laminarin supplementation increased the expression of interleukin 17A (IL17A) in the duodenum, claudin 1 (CLDN1) and toll-like receptor 2 (TLR2) in the jejunum and IL17A, CLDN1 and SLC15A1/peptide transporter 1 (SLC15A1/PepT1) in the ileum (P < 0.05). In conclusion, supplementation with laminarin is a promising dietary strategy to enhance growth performance and 300 ppm was the optimal inclusion level with which to promote a beneficial profile of the gastrointestinal microbiota in broiler chickens
    corecore