363 research outputs found

    The Interactions of Cyanobacterial Cytochromec6 and Cytochrome f, Characterized by NMR

    Get PDF
    During oxygenic photosynthesis, cytochromec6 shuttles electrons between the membrane-bound complexes cytochrome bf and photosystem I. Complex formation between Phormidium laminosum cytochromef and cytochrome c6 from bothAnabaena sp. PCC 7119 and Synechococcus elongatus has been investigated by nuclear magnetic resonance spectroscopy. Chemical-shift perturbation analysis reveals a binding site on Anabaena cytochrome c6, which consists of a predominantly hydrophobic patch surrounding the heme substituent, methyl 5. This region of the protein was implicated previously in the formation of the reactive complex with photosytem I. In contrast to the results obtained for Anabaena cytochromec6, there is no evidence for specific complex formation with the acidic cytochrome c6 fromSynechococcus. This remarkable variability between analogous cytochromes c6 supports the idea that different organisms utilize distinct mechanisms of photosynthetic intermolecular electron transfer.European Commission HPRN-CT-1999-00095Spanish Ministry of Science and Technology BMC2000-0444Andalusian Government CVI-019

    Capillary electrophoresis as a tool for genotyping SH3 mediated coffee leaf rust resistance

    Get PDF
    Coffee is an important agricultural commodity in the world. However, it is susceptible to Hemileia vastatrix (Hv), an obligatory biotrophic fungus that causes coffee leaf rust (CLR). Natural resistance to rust has been identified in the wild species Coffea canephora and Coffea liberica. These species have been used in breeding programs where interspecific resistant hybrids have been generated. The SH3 gene, derived from C. liberica, has been shown to confer extreme and long-lasting resistance to Hv. A total of 167 accessions of the INIA’s Coffee Germplasm Collection of Peru (INIA-CGC) were screened with 4 markers linked to the SH3 gene. As positive controls, EA67 (C. liberica) and the hybrid S.288 (C. arabica x C. liberica) were used. Separation of PCR products was done by capillary electrophoresis, which allow to discriminate the alleles of each marker. For three markers, specific alleles for either C. arabica or C. liberica species were found. In all cases, S.288 exhibited specific alleles for both species; whereas the INIA-CGC accessions had exclusively C. arabica alleles and EA67 had C. liberica alleles. The BA-48-21O-f marker did not produce PCR fragments for any of the positive controls, suggesting that this marker is not as predictive as the other three to determine the presence of SH3. This work reports the existence of multiple alleles for the Sat244 marker; however, the collection does not have the SH3 mediated-resistance gene. Finally, the utility of capillary electrophoresis as a tool to identify alleles linked to SH3 was demonstrated

    Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iß by cytochrome c

    Get PDF
    Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key re- gulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chap- erone SET/TAF-Iß interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iß to core histones, thereby locking its histone-binding domains and inhibiting its nucle- osome assembly activity. In addition, we have used NMR spectros- copy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iß. Overall, these findings estab- lish a framework for understanding the molecular basis of cyto- chrome c-mediated blocking of SET/TAF-Iß, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iß’s histone chaperone activity

    Functional Recovery and Serum Angiogenin Changes According to Intensity of Rehabilitation Therapy After Stroke

    Get PDF
    Rehabilitation is still the only treatment available to improve functional status after the acute phase of stroke. Most clinical guidelines highlight the need to design rehabilitation treatments considering starting time, intensity, and frequency, according to the tolerance of the patient. However, there are no homogeneous protocols and the biological effects are under investigation. To investigate the impact of rehabilitation intensity (hours) after stroke on functional improvement and serum angiogenin (ANG) in a 6-month follow-up study. A prospective, observational, longitudinal, and multicenter study with three cohorts: strokes in intensive rehabilitation therapy (IRT, minimum 15 h/week) vs. conventional therapy (NO-IRT, <15 h/week), and controls subjects (without known neurological, malignant, or inflammatory diseases). A total of seven centers participated, with functional evaluations and blood sampling during follow-up. The final cohort includes 62 strokes and 43 controls with demographic, clinical, blood samples, and exhaustive functional monitoring. The median (IQR) number of weekly hours of therapy was different: IRT 15 (15-16) vs. NO-IRT 7.5 (5-9), p < 0.01, with progressive and significant improvements in both groups. However, IRT patients showed earlier improvements (within 1 month) on several scales (CAHAI, FMA, and FAC; p < 0.001) and the earliest community ambulation achievements (0.89 m/s at 3 months). There was a significant difference in ANG temporal profile between the IRT and NO-IRT groups (p < 0.01). Additionally, ANG was elevated at 1 month only in the IRT group (p < 0.05) whereas it decreased in the NO-IRT group (p < 0.05). Our results suggest an association of rehabilitation intensity with early functional improvements, and connect the rehabilitation process with blood biomarkers

    Evaluation of Group Genetic Ancestry of Populations from Philadelphia and Dakar in the Context of Sex-Biased Admixture in the Americas

    Get PDF
    Population history can be reflected in group genetic ancestry, where genomic variation captured by the mitochondrial DNA (mtDNA) and non-recombining portion of the Y chromosome (NRY) can separate female- and male-specific admixture processes. Genetic ancestry may influence genetic association studies due to differences in individual admixture within recently admixed populations like African Americans.We evaluated the genetic ancestry of Senegalese as well as European Americans and African Americans from Philadelphia. Senegalese mtDNA consisted of approximately 12% U haplotypes (U6 and U5b1b haplotypes, common in North Africa) while the NRY haplotypes belonged solely to haplogroup E. In Philadelphia, we observed varying degrees of admixture. While African Americans have 9-10% mtDNAs and approximately 31% NRYs of European origin, these results are not mirrored in the mtDNA/NRY pools of European Americans: they have less than 7% mtDNAs and less than 2% NRYs from non-European sources. Additionally, there is <2% Native American contribution to Philadelphian African American ancestry and the admixture from combined mtDNA/NRY estimates is consistent with the admixture derived from autosomal genetic data. To further dissect these estimates, we have analyzed our samples in the context of different demographic groups in the Americas.We found that sex-biased admixture in African-derived populations is present throughout the Americas, with continual influence of European males, while Native American females contribute mainly to populations of the Caribbean and South America. The high non-European female contribution to the pool of European-derived populations is consistently characteristic of Iberian colonization. These data suggest that genomic data correlate well with historical records of colonization in the Americas

    Obstetric Outcomes in Women with Rheumatic Disease and COVID-19 in the Context of Vaccination Status

    Get PDF
    OBJECTIVE: To describe obstetric outcomes based on COVID-19 vaccination status, in women with rheumatic and musculoskeletal diseases (RMDs) who developed COVID-19 during pregnancy. METHODS: Data regarding pregnant women entered into the COVID-19 Global Rheumatology Alliance registry from 24 March 2020-25 February 2022 were analysed. Obstetric outcomes were stratified by number of COVID-19 vaccine doses received prior to COVID-19 infection in pregnancy. Descriptive differences between groups were tested using the chi -square or Fisher's exact test. RESULTS: There were 73 pregnancies in 73 women with RMD and COVID-19. Overall, 24.7% (18) of pregnancies were ongoing, while of the 55 completed pregnancies 90.9% (50) of pregnancies resulted in livebirths. At the time of COVID-19 diagnosis, 60.3% (n = 44) of women were unvaccinated, 4.1% (n = 3) had received one vaccine dose while 35.6% (n = 26) had two or more doses. Although 83.6% (n = 61) of women required no treatment for COVID-19, 20.5% (n = 15) required hospital admission. COVID-19 resulted in delivery in 6.8% (n = 3) of unvaccinated women and 3.8% (n = 1) of fully vaccinated women. There was a greater number of preterm births (PTB) in unvaccinated women compared with fully vaccinated 29.5% (n = 13) vs 18.2%(n = 2). CONCLUSION: In this descriptive study, unvaccinated pregnant women with RMD and COVID-19 had a greater number of PTB compared with those fully vaccinated against COVID-19. Additionally, the need for COVID-19 pharmacological treatment was uncommon in pregnant women with RMD regardless of vaccination status. These results support active promotion of COVID-19 vaccination in women with RMD who are pregnant or planning a pregnancy

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presented. ISSN:0029-5515 ISSN:1741-432

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F
    corecore