188 research outputs found
Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella
Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices
A close unicellular animal relative and predator of schistosomes exhibits chemokinesis in response to proteins and peptides from its prey
\ua9 2025 Quick et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Regulated motility is vital for many cells—both for unicellular microbes and for cells within multicellular bodies. Different conditions require different rates and directions of movement. For the microbial predator Capsaspora owczarzaki, its motility is likely essential for predation. This organism has been shown to prey on diverse organisms, including the schistosome parasites that co-reside with it in Biomphalaria glabrata snails. Capsaspora is also one of the closest living unicellular relatives of animals. This phylogenic placement makes Capsaspora’s motility an attractive target for understanding the evolution of motility in animal cells. Until now, little was known of how Capsaspora regulates its rate and direction of motility. Here we found that it exhibits chemokinesis (increased movement in response to chemical factors) in response to proteins released from prey cells. Chemokinesis also occurs in response to pure proteins—including bovine serum albumin. We found that this chemokinesis behavior is dependent on Capsaspora cell density, which suggests that the regulated motility is a cooperative behavior (possibly to improve cooperative feeding). We developed a mathematical model of Capsaspora motility and found that chemokinesis can benefit Capsaspora predation. In this model, Capsaspora moved in random trajectories. Chemotaxis (directional motility along a chemical gradient toward prey) is likely to synergize with this chemokinesis to further improve predation. Finally, we quantitatively analyzed Capsaspora’s previously reported chemotaxis behavior. These findings lay a foundation for characterizing the mechanisms of regulated motility in a predator of a human pathogen and a model for the ancestor of animals
Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes
<p>Abstract</p> <p>Background</p> <p>Catheter visualization and tracking remains a challenge in interventional MR.</p> <p>Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance.</p> <p>Results</p> <p>The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) <it>in vitro </it>and <it>in vivo </it>in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous <it>in vitro </it>and <it>in vivo</it>.</p> <p>Conclusion</p> <p>We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.</p
Factors influencing the utilization of research findings by health policy-makers in a developing country: the selection of Mali's essential medicines
BACKGROUND: Research findings are increasingly being recognized as an important input in the formation of health policy. There is concern that research findings are not being utilized by health policy-makers to the extent that they could be. The factors influencing the utilization of various types of research by health policy-makers are beginning to emerge in the literature, however there is still little known about these factors in developing countries. The object of this study was to explore these factors by examining the policy-making process for a pharmaceutical policy common in developing countries; an essential medicines list. METHODS: A study of the selection and updating of Mali's national essential medicines list was undertaken using qualitative methods. In-depth semi-structured interviews and a natural group discussion were held with national policy-makers, most specifically members of the national commission that selects and updates the country's list. The resulting text was analyzed using a phenomenological approach. A document analysis was also performed. RESULTS: Several factors emerged from the textual data that appear to be influencing the utilization of health research findings for these policy-makers. These factors include: access to information, relevance of the research, use of research perceived as a time consuming process, trust in the research, authority of those who presented their view, competency in research methods, priority of research in the policy process, and accountability. CONCLUSION: Improving the transfer of research to policy will require effort on the part of researchers, policy-makers, and third parties. This will include: collaboration between researchers and policy-makers, increased production and dissemination of relevant and useful research, and continued and improved technical support from networks and multi-national organizations. Policy-makers from developing countries will then be better equipped to make informed decisions concerning their health policy issues
Clinical practice: The bleeding child. Part II: Disorders of secondary hemostasis and fibrinolysis
Bleeding complications in children may be caused by disorders of secondary hemostasis or fibrinolysis. Characteristic features in medical history and physical examination, especially of hemophilia, are palpable deep hematomas, bleeding in joints and muscles, and recurrent bleedings. A detailed medical and family history combined with a thorough physical examination is essential to distinguish abnormal from normal bleeding and to decide whether it is necessary to perform diagnostic laboratory evaluation. Initial laboratory tests include prothrombin time and activated partial thromboplastin time. Knowledge of the classical coagulation cascade with its intrinsic, extrinsic, and common pathways, is useful to identify potential defects in the coagulation in order to decide which additional coagulation tests should be performed
An assessment of the usefulness of a rapid immuno-chromatographic test, "Determine™ malaria pf" in evaluation of intervention measures in forest villages of central India
BACKGROUND: Plasmodium falciparum malaria, is a major health problem in forested tribal belt of central India. Rapid and accurate methods are needed for the diagnosis of P. falciparum. We performed a blinded evaluation of the recently introduced Determine™ malaria pf test (Abbott, Laboratories, Japan) compared with microscopy and splenomegaly in children in epidemic prone areas of district Mandla to assess the impact of intervention measures. METHODS: Children aged 2–10 yrs with and without fever were examined for spleen enlargement by medical specialist by establishing a mobile field clinic. From these children thick blood smears were prepared from finger prick and read by a technician. Simultaneously, rapid tests were performed by a field lab attendant. The figures for specificity, sensitivity and predictive values were calculated using microscopy as gold standard. RESULTS: In all 349 children were examined. The sensitivity and specificity for Determine rapid diagnostic test were 91 and 80% respectively. The positive predictive values (PPV), negative predictive values (NPV) and accuracy of the test were respectively 79, 91 and 85%. On the contrary, the sensitivity and specificity of spleen in detecting malaria infection were 57 and 74 % respectively with PPV of 73%, NPV 59 % and an accuracy of 65%. CONCLUSIONS: Determine™ malaria rapid diagnostic test is easier and quicker to perform and has other advantages over microscopy in not requiring prior training of personnel or quality control. Thus, highlighting the usefulness of a rapid antigen test in assessing prevailing malaria situation in remote areas
Characterization of Salmonella Type III Secretion Hyper-Activity Which Results in Biofilm-Like Cell Aggregation
We have previously reported the cloning of the Salmonella enterica serovar Typhimurium SPI-1 secretion system and the use of this clone to functionally complement a ΔSPI-1 strain for type III secretion activity. In the current study, we discovered that S. Typhimurium cultures containing cloned SPI-1 display an adherent biofilm and cell clumps in the media. This phenotype was associated with hyper-expression of SPI-1 type III secretion functions. The biofilm and cell clumps were associated with copious amounts of secreted SPI-1 protein substrates SipA, SipB, SipC, SopB, SopE, and SptP. We used a C-terminally FLAG-tagged SipA protein to further demonstrate SPI-1 substrate association with the cell aggregates using fluorescence microscopy and immunogold electron microscopy. Different S. Typhimurium backgrounds and both flagellated and nonflagellated strains displayed the biofilm phenotype. Mutations in genes essential for known bacterial biofilm pathways (bcsA, csgBA, bapA) did not affect the biofilms formed here indicating that this phenomenon is independent of established biofilm mechanisms. The SPI-1-mediated biofilm was able to massively recruit heterologous non-biofilm forming bacteria into the adherent cell community. The results indicate a bacterial aggregation phenotype mediated by elevated SPI-1 type III secretion activity with applications for engineered biofilm formation, protein purification strategies, and antigen display
Urban-rural inequality regarding drug prescriptions in primary care facilities – a pre-post comparison of the National Essential Medicines Scheme of China
Are hygiene and public health interventions likely to improve outcomes for Australian Aboriginal children living in remote communities? A systematic review of the literature
Background
Australian Aboriginal children living in remote communities still experience a high burden of common infectious diseases which are generally attributed to poor hygiene and unsanitary living conditions. The objective of this systematic literature review was to examine the epidemiological evidence for a relationship between various hygiene and public health intervention strategies, separately or in combination, and the occurrence of common preventable childhood infectious diseases. The purpose was to determine what intervention/s might most effectively reduce the incidence of skin, diarrhoeal and infectious diseases experienced by children living in remote Indigenous communities.
Methods
Studies were identified through systematically searching electronic databases and hand searching. Study types were restricted to those included in Cochrane Collaboration Effective Practice and Organisation of Care Review Group (EPOC) guidelines and reviewers assessed the quality of studies and extracted data using the same guidelines. The types of participants eligible were Indigenous populations and populations of developing countries. The types of intervention eligible for inclusion were restricted to those likely to prevent conditions caused by poor personal hygiene and poor living environments.
Results
The evidence showed that there is clear and strong evidence of effect of education and handwashing with soap in preventing diarrhoeal disease among children (consistent effect in four studies). In the largest well-designed study, children living in households that received plain soap and encouragement to wash their hands had a 53% lower incidence of diarrhoea (95% CI, 0.35, 0.59). There is some evidence of an effect of education and other hygiene behaviour change interventions (six studies), as well as the provision of water supply, sanitation and hygiene education (two studies) on reducing rates of diarrhoeal disease. The size of these effects is small and the quality of the studies generally poor.
Conclusion
Research which measures the effectiveness of hygiene interventions is complex and difficult to implement. Multifaceted interventions (which target handwashing with soap and include water, sanitation and hygiene promotion) are likely to provide the greatest opportunity to improve child health outcomes in remote Indigenous communities
A role for Piezo2 in EPAC1-dependent mechanical allodynia
N.E. and J.W. designed and supervised experiments. N.E. performed most of the in vivo and
in vitro experiments. J.L. performed experiments to characterize hPiezo2. G.H and G.L.
supervised by U.O., and J.T. and J.C. cloned hPiezo. L.B. performed the in vivo electrophysiology
under the supervision of A.D. M.G. helped with the overexpression studies.M.M.
performed surgery. Y.I. provided the Epac1 / mice. F.Z. provided
the Epac constructs. N.E. and J.W. wrote manuscript with contributions of all authors. N.E.,
J.L. and L.B. contributed to data analysis and all authors contributed to the discussionsAberrant mechanosensation has an important role in different pain states. Here we show
that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction
contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during
neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1 / mice. The
Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory
neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the
activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase
C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces
long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse
Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally,
8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical
excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the
development of mechanical allodynia during neuropathic pain.Netherlands Organization for Scientific Research (NWO)Jose Castillejo fellowship
JC2010-0196Spanish GovernmentMedical Research Council UK (MRC)WCU at SNU
R31-2008-000-10103-0EU IMI Europain grantBBSRC LOLA grantWellcome TrustVersus Arthritis
20200Biotechnology and Biological Sciences Research Council (BBSRC)
BB/F000227/1Medical Research Council UK (MRC)
G0901905
G9717869
G110034
- …
