24 research outputs found

    Estimating fine-scale changes in turbulence using the movements of a flapping flier

    Get PDF
    All animals that operate within the atmospheric boundary layer need to respond to aerial turbulence. Yet little is known about how flying animals do this because evaluating turbulence at fine scales (tens to approx. 300 m) is exceedingly difficult. Recently, data from animal-borne sensors have been used to assess wind and updraft strength, providing a new possibility for sensing the physical environment. We tested whether highly resolved changes in altitude and body acceleration measured onboard solo-flying pigeons (as model flapping fliers) can be used as qualitative proxies for turbulence. A range of pressure and acceleration proxies performed well when tested against independent turbulence measurements from a tri-axial anemometer mounted onboard an ultralight flying the same route, with stronger turbulence causing increasing vertical displacement. The best proxy for turbulence also varied with estimates of both convective velocity and wind shear. The approximately linear relationship between most proxies and turbulence levels suggests this approach should be widely applicable, providing insight into how turbulence changes in space and time. Furthermore, pigeons were able to fly in levels of turbulence that were unsafe for the ultralight, paving the way for the study of how freestream turbulence affects the costs and kinematics of animal flight

    Turbulence causes kinematic and behavioural adjustments in a flapping flier

    Get PDF
    Turbulence is a widespread phenomenon in the natural world, but its influence on flapping fliers remains little studied. We assessed how freestream turbulence affected the kinematics, flight effort and track properties of homing pigeons (Columba livia), using the fine-scale variations in flight height as a proxy for turbulence levels. Birds showed a small increase in their wingbeat amplitude with increasing turbulence (similar to laboratory studies), but this was accompanied by a reduction in mean wingbeat frequency, such that their flapping wing speed remained the same. Mean kinematic responses to turbulence may therefore enable birds to increase their stability without a reduction in propulsive efficiency. Nonetheless, the most marked response to turbulence was an increase in the variability of wingbeat frequency and amplitude. These stroke-to-stroke changes in kinematics provide instantaneous compensation for turbulence. They will also increase flight costs. Yet pigeons only made small adjustments to their flight altitude, likely resulting in little change in exposure to strong convective turbulence. Responses to turbulence were therefore distinct from responses to wind, with the costs of high turbulence being levied through an increase in the variability of their kinematics and airspeed. This highlights the value of investigating the variability in flight parameters in free-living animals

    Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)

    Get PDF
    Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems

    Introducing a unique animal ID and digital life history museum for wildlife metadata

    Get PDF
    Funding: C.R. acknowledges funding from the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS-82515R-20). G.B., R.K., S.C.D. and D.E.-S. acknowledge funding from NASA. A.S. and F.I. acknowledge support from the European Commission through the Horizon 2020 Marie SkƂodowska-Curie Actions Individual Fellowships (grant no. 101027534 and no. 101107666, respectively). S.C.D. acknowledges funding from NASA Ecological Forecasting Program Grant 80NSSC21K1182. A.M.M.S. was supported by an ARC DP DP210103091. This project is funded in part by the Gordon and Betty Moore Foundation through Grant GBMF10539 to M.W., as well as the Academy for the Protection of Zoo Animals and Wildlife e.V., Germany.1. Over the past five decades, a large number of wild animals have been individually identified by various observation systems and/or temporary tracking methods, providing unparalleled insights into their lives over both time and space. However, so far there is no comprehensive record of uniquely individually identified animals nor where their data and metadata are stored, for example photos, physiological and genetic samples, disease screens, information on social relationships. 2. Databases currently do not offer unique identifiers for living, individual wild animals, similar to the permanent ID labelling for deceased museum specimens. 3. To address this problem, we introduce two new concepts: (1) a globally unique animal ID (UAID) available to define uniquely and individually identified animals archived in any database, including metadata archived at the time of publication; and (2) the digital ‘home’ for UAIDs, the Movebank Life History Museum (MoMu), storing and linking metadata, media, communications and other files associated with animals individually identified in the wild. MoMu will ensure that metadata are available for future generations, allowing permanent linkages to information in other databases. 4. MoMu allows researchers to collect and store photos, behavioural records, genome data and/or resightings of UAIDed animals, encompassing information not easily included in structured datasets supported by existing databases. Metadata is uploaded through the Animal Tracker app, the MoMu website, by email from registered users or through an Application Programming Interface (API) from any database. Initially, records can be stored in a temporary folder similar to a field drawer, as naturalists routinely do. Later, researchers and specialists can curate these materials for individual animals, manage the secure sharing of sensitive information and, where appropriate, publish individual life histories with DOIs. The storage of such synthesized lifetime stories of wild animals under a UAID (unique identifier or ‘animal passport’) will support basic science, conservation efforts and public participation.Peer reviewe

    Corticosterone and brood abandonment in a passerine bird

    No full text

    Data from: Artificial light at night advances avian reproductive physiology

    No full text
    Artificial light at night is a rapidly increasing phenomenon and it is presumed to have global implications. Light at night has been associated with health problems in humans as a consequence of altered biological rhythms. Effects on wild animals have been less investigated, but light at night has often been assumed to affect seasonal cycles of urban dwellers. Using light loggers attached to free-living European blackbirds (Turdus merula), we first measured light intensity at night which forest and city birds are subjected to in the wild. Then we used these measurements to test for the effect of light at night on timing of reproductive physiology. Captive city and forest blackbirds were exposed to either dark nights or very low light intensities at night (0.3 lux). Birds exposed to light at night developed their reproductive system up to one month earlier, and also moulted earlier, than birds kept under dark nights. Furthermore, city birds responded differently than forest individuals to the light at night treatment, suggesting that urbanization can alter the physiological phenotype of songbirds. Our results emphasize the impact of human-induced lighting on the ecology of millions of animals living in cities and call for an understanding of the fitness consequences of light pollution

    Dynamic body acceleration increases by 20% during flight ontogeny of greylag geese Anser anser

    No full text
    Despite our knowledge of the biophysical and behavioural changes during flight ontogeny in juvenile birds, little is known about the changes in the mechanical aspects of energy expenditure during early flight development, particularly in migratory species. Here, we investigate in a unique experimental setup how energy expended during flights changes over time beginning with early ontogeny. We calculate overall dynamic body acceleration (ODBA) as a proxy for energy expenditure in a group of hand raised greylag geese Anser anser trained to fly behind a microlight aircraft. We propose two potential hypotheses; energy expenditure either increases with increasing physiological suitability (the 'physical development hypothesis'), or decreases as a result of behavioural improvements mitigating flight costs (the 'behavioural development hypothesis'). There was a significant temporal increase of flight duration and ODBA over time, supporting the 'physical development hypothesis'. This suggests that early on in flight ontogeny behavioural development leading to flight efficiency plays a weaker role in shaping ODBA changes than the increased physical ability to expend energy in flight. We discuss these findings and the implications of flight development on the life history of migratory species
    corecore