77 research outputs found
The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG),is used to monitor sky conditions over ESO's Paranal observatory in support of VLT science operations. The unit measures several channels across the strong water vapour emission line at 183 GHz, necessary for resolving the low levels of precipitable water vapour (PWV) that are prevalent on Paranal (median similar to 2.4 mm). The instrument consists of a humidity profiler (183-191 GHz),a temperature profiler (51-58 GHz),and an infrared camera (similar to 10 mu m) for cloud detection. We present a statistical analysis of the homogeneity of all-sky PWV using 24 months of PWV observations. The question we tried to address was whether PWV is homogeneous enough across the sky such that service mode observations with the VLT can routinely be conducted with a user-provided constraint for PWV measured at zenith. We find the PWV over Paranal to be remarkably homogeneous across the sky down to 27.5 degrees elevation with a median variation of 0.07 mm (rms). The homogeneity is a function of the absolute PWV but the relative variation is fairly constant at 2 to 3% (rms). Such variations will not be a significant issue for analysis of astronomical data. Users at ESO can specify PWV - measured at zenith - as an ambient constraint in service mode to enable, for instance, very demanding observations in the infrared. We conclude that in general it will not be necessary to add another observing constraint for PWV homogeneity to ensure integrity of observations. For demanding observations requiring very low PWV, where the relative variation is higher, the optimum support could be provided by observing with the LHATPRO in the same line-of-sight simultaneously. Such a mode of operations has already been tested but will have to be justified in terms of scientific gain before implementation can be considered. We plan to extend our analysis of PWV variations covering a larger parameters space for temporal and spatial resolution in the future. Also for climate studies such data sets will be relevant
Combining data from the distributed GRUAN site Lauder-Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature
A site atmospheric state best estimate (SASBE) of the temperature profile above the GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple sources are combined within the SASBE to generate a high temporal resolution data set that includes an estimate of the uncertainty on every value.
The SASBE has been developed to enhance the value of measurements made at the distributed GRUAN site at Lauder and Invercargill (about 180km apart), and to demonstrate a methodology which can be adapted to other distributed sites. Within GRUAN, a distributed site consists of a cluster of instruments at different locations.
The temperature SASBE combines measurements from radiosondes and automatic weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is used to calculate a diurnal temperature cycle to which the SASBE converges in the absence of any measurements.
The SASBE provides hourly temperature profiles at 16 pressure levels between the surface and 10hPa for the years 1997 to 2012. Every temperature value has an associated uncertainty which is calculated by propagating the measurement uncertainties, the ERA5 ensemble standard deviations, and the ERA5 representativeness uncertainty through the retrieval chain. The SASBE has been long-term archived and is identified using the digital object identifier https://doi.org/10.5281/zenodo.1195779.
The study demonstrates a method to combine data collected at distributed sites. The resulting best-estimate temperature data product for Lauder is expected to be valuable for satellite and model validation as measurements of atmospheric essential climate variables are sparse in the Southern Hemisphere. The SASBE could, for example, be used to constrain a radiative transfer model to provide top-of-the-atmosphere radiances with traceable uncertainty estimates
The Earth as an extrasolar transiting planet - II: HARPS and UVES detection of water vapor, biogenic O, and O
The atmospheric composition of transiting exoplanets can be characterized
during transit by spectroscopy. For the transit of an Earth twin, models
predict that biogenic and should be detectable, as well as water
vapour, a molecule linked to habitability as we know it on Earth. The aim is to
measure the Earth radius versus wavelength - or the atmosphere
thickness - at the highest spectral resolution available to fully
characterize the signature of Earth seen as a transiting exoplanet. We present
observations of the Moon eclipse of 21-12-2010. Seen from the Moon, the Earth
eclipses the Sun and opens access to the Earth atmosphere transmission
spectrum. We used HARPS and UVES spectrographs to take penumbra and umbra
high-resolution spectra from 3100 to 10400 Ang. A change of the quantity of
water vapour above the telescope compromised the quality of the UVES data. We
corrected for this effect in the data processing. We analyzed the data by 3
different methods. The 1st method is based on the analysis of pairs of penumbra
spectra. The 2nd makes use of a single penumbra spectrum, and the 3rd of all
penumbra and umbra spectra. Profiles are obtained with the three
methods for both instruments. The 1st method gives the best result, in
agreement with a model. The second method seems to be more sensitive to the
Doppler shift of solar spectral lines with respect to the telluric lines. The
3rd method makes use of umbra spectra which bias the result, but it can be
corrected for this a posteriori from results with the first method. The 3
methods clearly show the spectral signature of the Rayleigh scattering in the
Earth atmosphere and the bands of HO, O, and O. Sodium is detected.
Assuming no atmospheric perturbations, we show that the E-ELT is theoretically
able to detect the A-band in 8~h of integration for an Earth twin at
10pc.Comment: Final version accepted for publication in A&A - 21 pages, 27 figures.
Abstract above slightly shortened wrt the original. The ArXiv version has low
resolution figures, but a version with full resolution figures is available
here:
http://www.obs-hp.fr/~larnold/publi_to_download/eclipse2010_AA_v5_final.pd
The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations
Within the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) there is a need for an assessment of the uncertainty in the integrated water vapour (IWV) in the atmosphere estimated from ground-based global navigation satellite system (GNSS) observations. All relevant error sources in GNSS-derived IWV are therefore essential to be investigated. We present two approaches,
a statistical and a theoretical analysis, for the assessment
of the uncertainty of the IWV. The method is valuable for all applications of GNSS IWV data in atmospheric research and weather forecast. It will be implemented to the
GNSS IWV data stream for GRUAN in order to assign a
specific uncertainty to each data point. In addition, specific recommendations are made to GRUAN on hardware, software,and data processing practices to minimise the IWV uncertainty. By combining the uncertainties associated with the input variables in the estimations of the IWV, we calculated the IWV uncertainties for several GRUAN sites with different weather conditions. The results show a similar relative importance of all uncertainty contributions where the uncertainties in the zenith total delay (ZTD) dominate the error budget of the IWV, contributing over 75% of the total IWV uncertainty. The impact of the uncertainty associated with the conversion factor between the IWV and the zenith wet delay (ZWD) is proportional to the amount of water vapour and increases slightly for moist weather conditions. The GRUAN GNSS IWV uncertainty data will provide a quantified confidence to be used for the validation of other measurement techniques
Measuring NIR Atmospheric Extinction Using a Global Positioning System Receiver
Modeling molecular absorption by Earth's atmosphere is important for a wide
range of astronomical observations, including broadband NIR photometry and
high-resolution NIR spectroscopy. Using a line-by-line radiative transfer
approach, we calculate theoretical transmission spectra in the deep red optical
(700 to 1050 nm) for Apache Point Observatory. In this region the spectrum is
dominated by H2O, which is known to be highly variable in concentration on
short timescales. We fit our telluric models to high-resolution observations of
A stars and estimate the relative optical depth of H2O absorption under a wide
range of observing conditions. We compare these optical depth estimates to
simultaneous measurements of Precipitable Water Vapor (PWV) based on data from
a Global Positioning System (GPS) receiver located at Apache Point. We find
that measured PWV correlates strongly with the scaling of H2O absorption lines
in our spectra, indicating that GPS-based PWV measurements combined with
atmospheric models may be a powerful tool for the real-time estimation of total
molecular absorption in broad NIR bands. Using photometric measurements from
the Sloan Digital Sky Survey (SDSS) DR8 database we demonstrate that PWV biases
the calibrated r-z colors and z-band fluxes of mid-M stars but not mid-G stars.
While this effect is small compared to other sources of noise in the SDSS
z-band observations, future surveys like the Large Synoptic Survey Telescope
aim for higher precision and will need to take time-variable molecular
transmission into account for the global calibration of NIR measurements of
objects having strong spectral features at these wavelengths. Empirical
calibrations based on PWV may be immediately applicable to ongoing efforts to
make mmag differential measurements of M stars to detect transiting exoplanets.Comment: 19 pages, 9 figures. Accepted for publication in PAS
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Automatic lidars and ceilometers (ALCs) provide valuable information on cloud and aerosols but have not been systematically used in the evaluation of general circulation models (GCMs) and numerical weather prediction (NWP) models. Obstacles associated with the diversity of instruments, a lack of standardisation of data products and open processing tools mean that the value of large ALC networks worldwide is not being realised. We discuss a tool, called the Automatic Lidar and Ceilometer Framework (ALCF), that overcomes these problems and also includes a ground-based lidar simulator, which calculates the radiative transfer of laser radiation and allows one-to-one comparison with models. Our ground-based lidar simulator is based on the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP), which has been extensively used for spaceborne lidar intercomparisons. The ALCF implements all steps needed to transform and calibrate raw ALC data and create simulated attenuated volume backscattering coefficient profiles for one-to-one comparison and complete statistical analysis of clouds. The framework supports multiple common commercial ALCs (Vaisala CL31, CL51, Lufft CHM 15k and Droplet Measurement Technologies MiniMPL), reanalyses (JRA-55, ERA5 and MERRA-2) and models (the Unified Model and AMPS - the Antarctic Mesoscale Prediction System). To demonstrate its capabilities, we present case studies evaluating cloud in the supported reanalyses and models using CL31, CL51, CHM 15k and MiniMPL observations at three sites in New Zealand. We show that the reanalyses and models generally underestimate cloud fraction. If sufficiently high-temporal-resolution model output is available (better than 6-hourly), a direct comparison of individual clouds is also possible. We demonstrate that the ALCF can be used as a generic evaluation tool to examine cloud occurrence and cloud properties in reanalyses, NWP models, and GCMs, potentially utilising the large amounts of ALC data already available. This tool is likely to be particularly useful for the analysis and improvement of low-level cloud simulations which are not well monitored from space. This has previously been identified as a critical deficiency in contemporary models, limiting the accuracy of weather forecasts and future climate projections. While the current focus of the framework is on clouds, support for aerosol in the lidar simulator is planned in the future
Combining data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature
A site atmospheric state best estimate (SASBE) of the temperature profile
above the GCOS (Global Climate Observing System) Reference Upper-Air Network
(GRUAN) site at Lauder, New Zealand, has been developed. Data from multiple
sources are combined within the SASBE to generate a high temporal resolution
data set that includes an estimate of the uncertainty on every value.The SASBE has been developed to enhance the value of measurements made at the
distributed GRUAN site at Lauder and Invercargill (about 180 km apart), and
to demonstrate a methodology which can be adapted to other distributed sites.
Within GRUAN, a distributed site consists of a cluster of instruments at
different locations.The temperature SASBE combines measurements from radiosondes and automatic
weather stations at Lauder and Invercargill, and ERA5 reanalysis, which is
used to calculate a diurnal temperature cycle to which the SASBE converges in
the absence of any measurements.The SASBE provides hourly temperature profiles at 16 pressure levels between
the surface and 10 hPa for the years 1997 to 2012. Every temperature value
has an associated uncertainty which is calculated by propagating the
measurement uncertainties, the ERA5 ensemble standard deviations, and the
ERA5 representativeness uncertainty through the retrieval chain. The SASBE
has been long-term archived and is identified using the digital object
identifier https://doi.org/10.5281/zenodo.1195779.The study demonstrates a method to combine data collected at distributed
sites. The resulting best-estimate temperature data product for Lauder is
expected to be valuable for satellite and model validation as measurements of
atmospheric essential climate variables are sparse in the Southern
Hemisphere. The SASBE could, for example, be used to constrain a radiative
transfer model to provide top-of-the-atmosphere radiances with traceable
uncertainty estimates.</p
Ground-based validation of the MetOp-A and MetOp-B GOME-2 OClO measurements
This paper reports on ground-based validation of the atmospheric OClO data record produced within the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC SAF) using the Global Ozone Monitoring Experiment (GOME)-2A and GOME-2B instrument measurements, covering the 2007–2016 and 2013–2016 periods, respectively. OClO slant column densities are compared to correlative measurements collected from nine Zenith-Scattered-Light Differential Optical Absorption Spectroscopy (ZSL-DOAS) instruments from the Network for the Detection of Atmospheric Composition Change (NDACC) distributed in both the Arctic and Antarctic. Sensitivity tests are performed on the ground-based data to estimate the impact of the different OClO DOAS analysis settings. On this basis, we infer systematic uncertainties of about 25 % (i.e., about 3.75×10^13 molec. cm−2) between the different ground-based data analyses, reaching total uncertainties ranging from about 26 % to 33 % for the different stations (i.e., around 4 to 5×10^13 molec. cm−2). Time series at the different sites show good agreement between satellite and ground-based data for both the inter-annual variability and the overall OClO seasonal behavior. GOME-2A results are found to be noisier than those of GOME-2B, especially after 2011, probably due to instrumental degradation effects. Daily linear regression analysis for OClO-activated periods yield correlation coefficients of 0.8 for GOME-2A and 0.87 for GOME-2B, with slopes with respect to the ground-based data ensemble of 0.64 and 0.72, respectively. Satellite minus ground-based offsets are within 8×10^13 molec. cm−2, with some differences between GOME-2A and GOME-2B depending on the station. Overall, considering all the stations, a median offset of about -2.2×10^13 molec. cm−2 is found for both GOME-2 instruments
- …