9 research outputs found

    IRMA calibrations and data analysis for telescope site selection

    Get PDF
    xii, 135 leaves : ill. ; 28 cm. --Our group has developed a 20 μm passive atmospheric water vapour monitor. The Infrared Radiometer for Millimetre Astronomy (IRMA) has been commissioned and deployed for site testing for the Thirty Meter Telescope (TMT) and the Giant Magellan Telescope (GMT). Measuring precipitable water vapour (PWV) requires both a sophisticated atmospheric model (BTRAM) and an instrument (IRMA). Atmospheric models depend on atmospheric profiles. Most profiles are generic in nature, representing only a latitude in some cases. Site-specific atmospheric profiles are required to accurately simulate the atmosphere above any location on Earth. These profiles can be created from publicly available archives of radiosonde data, that offer nearly global coverage. Having created a site-specific profile and model, it is necessary to determine the PWV sensitivity to the input parameter uncertainties used in the model. The instrument must also be properly calibrated. In this thesis, I describe the radiometric calibration of the IRMA instrument, and the creation and analysis of site-specific atmospheric models for use with the IRMA instrument in its capacity as an atmospheric water vapour monitor for site testing

    Remote sensing of atmospheric water vapour above the Chilean Andes

    Get PDF
    xvii, 206 leaves : ill. (some col.) ; 28 cmWater vapour is the principle source of opacity at infrared wavelengths in the Earth’s atmosphere. In support of site testing for the European Extremely Large Telescope (E-ELT), we have used La Silla and Paranal as calibration sites to verify satellite measurements of precipitable water vapour (PWV). We reconstructed the PWV history over both sites by analysing thousands of archived high-resolution echelle calibration spectra and compared that to satellite estimates for the same period. Three PWV measurement campaigns were conducted over both sites using several independent measurement techniques. Radiosondes were launched to coincide with satellite measurements and provide a PWV reference standard allowing intercomparison between the various instruments and methods. This multi-faceted approach has resulted in a unique data set. Integral to this analysis is the internal consistency provided by using a common atmospheric model

    Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model

    Get PDF
    This study presents an updated evaluation of stratospheric ozone profile trends in the 60° S–60° N latitude range over the 2000–2020 period using an updated version of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) regression model that was used to evaluate such trends up to 2016 for the last WMO Ozone Assessment (2018). In addition to the derivation of detailed trends as a function of latitude and vertical coordinates, the regressions are performed with the datasets averaged over broad latitude bands, i.e. 60–35° S, 20° S–20° N and 35–60° N. The same methodology as in the last assessment is applied to combine trends in these broad latitude bands in order to compare the results with the previous studies. Longitudinally resolved merged satellite records are also considered in order to provide a better comparison with trends retrieved from ground-based records, e.g. lidar, ozonesondes, Umkehr, microwave and Fourier transform infrared (FTIR) spectrometers at selected stations where long-term time series are available. The study includes a comparison with trends derived from the REF-C2 simulations of the Chemistry Climate Model Initiative (CCMI-1). This work confirms past results showing an ozone increase in the upper stratosphere, which is now significant in the three broad latitude bands. The increase is largest in the Northern and Southern Hemisphere midlatitudes, with ∼2.2 ± 0.7 % per decade at ∼2.1 hPa and ∼2.1 ± 0.6 % per decade at ∼3.2 hPa respectively compared to ∼1.6 ± 0.6 % per decade at ∼2.6 hPa in the tropics. New trend signals have emerged from the records, such as a significant decrease in ozone in the tropics around 35 hPa and a non-significant increase in ozone in the southern midlatitudes at about 20 hPa. Non-significant negative ozone trends are derived in the lowermost stratosphere, with the most pronounced trends in the tropics. While a very good agreement is obtained between trends from merged satellite records and the CCMI-1 REF-C2 simulation in the upper stratosphere, observed negative trends in the lower stratosphere are not reproduced by models at southern and, in particular, at northern midlatitudes, where models report an ozone increase. However, the lower-stratospheric trend uncertainties are quite large, for both measured and modelled trends. Finally, 2000–2020 stratospheric ozone trends derived from the ground-based and longitudinally resolved satellite records are in reasonable agreement over the European Alpine and tropical regions, while at the Lauder station in the Southern Hemisphere midlatitudes they show some differences

    An update on ozone profile trends for the period 2000 to 2016

    Get PDF
    Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 km altitude (5 and 1 hPa). Near 2 hPa (42 km), ozone has been increasing by about 1.5 % per decade in the tropics (20° S to 20° N), and by 2 to 2.5 % per decade in the 35 to 60° latitude bands of both hemispheres. At levels below 35 km (5 hPa), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hPa in the 35 to 60° latitude bands from about ±5 % (2σ) in Harris et al. (2015) to less than ±2 % (2σ). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected

    Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model

    Get PDF
    peer reviewedAbstract. This study presents an updated evaluation of stratospheric ozone profile trends in the 60∘ S–60º N latitude range over the 2000–2020 period using an updated version of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) regression model that was used to evaluate such trends up to 2016 for the last WMO Ozone Assessment (2018). In addition to the derivation of detailed trends as a function of latitude and vertical coordinates, the regressions are performed with the datasets averaged over broad latitude bands, i.e. 60–35º S, 20º S–20º N and 35–60º N. The same methodology as in the last assessment is applied to combine trends in these broad latitude bands in order to compare the results with the previous studies. Longitudinally resolved merged satellite records are also considered in order to provide a better comparison with trends retrieved from ground-based records, e.g. lidar, ozonesondes, Umkehr, microwave and Fourier transform infrared (FTIR) spectrometers at selected stations where long-term time series are available. The study includes a comparison with trends derived from the REF-C2 simulations of the Chemistry Climate Model Initiative (CCMI-1). This work confirms past results showing an ozone increase in the upper stratosphere, which is now significant in the three broad latitude bands. The increase is largest in the Northern and Southern Hemisphere midlatitudes, with ∼2.2 ± 0.7 % per decade at ∼2.1 hPa and ∼2.1 ± 0.6 % per decade at ∼3.2 hPa respectively compared to ∼1.6 ± 0.6 % per decade at ∼2.6 hPa in the tropics. New trend signals have emerged from the records, such as a significant decrease in ozone in the tropics around 35 hPa and a non-significant increase in ozone in the southern midlatitudes at about 20 hPa. Non-significant negative ozone trends are derived in the lowermost stratosphere, with the most pronounced trends in the tropics. While a very good agreement is obtained between trends from merged satellite records and the CCMI-1 REF-C2 simulation in the upper stratosphere, observed negative trends in the lower stratosphere are not reproduced by models at southern and, in particular, at northern midlatitudes, where models report an ozone increase. However, the lower-stratospheric trend uncertainties are quite large, for both measured and modelled trends. Finally, 2000–2020 stratospheric ozone trends derived from the ground-based and longitudinally resolved satellite records are in reasonable agreement over the European Alpine and tropical regions, while at the Lauder station in the Southern Hemisphere midlatitudes they show some differences

    Validation of SAGE III/ISS Solar Occultation Ozone Products with Correlative Satellite and Ground Based Measurements

    No full text
    International audienceThe Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) was launched on February 19, 2017 and began routine operation in June 2017. The first two years of SAGE III/ISS (v5.1) solar occultation ozone data were evaluated by using correlative satellite and ground‐based measurements. Among the three (MES, AO3, and MLR) SAGE III/ISS retrieved solar ozone products, AO3 ozone shows the smallest bias and best precision, with mean biases less than 5% for altitudes ~15–55 km in the mid‐latitudes and ~20–55 km in the tropics. In the lower stratosphere and upper troposphere, AO3 ozone shows high biases that increase with decreasing altitudes and reach ~10% near the tropopause. Preliminary studies indicate that those high biases primarily result from the contributions of the oxygen dimer (O4) not being appropriately removed within the ozone channel. The precision of AO3 ozone is estimated to be ~3% for altitudes between 20 and 40 km. It degrades to ~10–15% in the lower mesosphere (~55 km), and ~20–30% near the tropopause. There could be an altitude registration error of ~100 meters in the SAGE III/ISS auxiliary temperature and pressure profiles. This, however, does not affect retrieved ozone profiles in native number density on geometric altitude coordinates. In the upper stratosphere and lower mesosphere (~40–55 km) the SAGE III/ISS (and SAGE II) retrieved ozone values show sunrise/sunset differences of ~5–8%, which are almost twice as large as what was observed by other satellites or model predictions. This feature needs further study

    Updated trends of the stratospheric ozone vertical distribution in the 60°S-60°N latitude range based on the LOTUS regression model

    No full text
    International audienceThis study presents an updated evaluation of stratospheric ozone profile trends in the 60° S–60° N latitude range over the 2000–2020 period, using an updated version of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) regression model that was used to evaluate such trends up to 2016 for the last WMO Ozone Assessment (2018). In addition to the derivation of detailed trends as a function of latitude and vertical coordinates, the regressions are performed with the data sets averaged over broad latitude bands, i.e. 60° S–35° S, 20° S–20° N and 35° N–60° N. The same methodology as in the last Assessment is applied to combine trends in these broad latitude bands in order to compare the results with the previous studies. Longitudinally resolved merged satellite records are also considered in order to provide a better comparison with trends retrieved from ground-based records, e.g. lidar, ozone sondes, Umkehr, microwave and Fourier Transform Infrared (FTIR) spectrometers at selected stations where long-term time series are available. The study includes a comparison with trends derived from the latest REF-C2 simulations of the Chemistry Climate Model Initiative (CCMI). This work confirms past results showing an ozone increase in the upper stratosphere, which is now significant in the three broad latitude bands. The increase is largest in the northern and southern hemisphere midlatitudes, with ~2.2 %/decade at ~2.1 hPa, and ~2.1 %/decade at ~3.2 hPa respectively, compared to ~1.6 %/decade at ~2.6 hPa in the tropics. New trend signals have emerged from the records, such as a significant decrease of ozone in the tropics around 35 hPa and a non-significant increase of ozone in the southern mid-latitudes at about 20 hPa. Non-significant negative ozone trends are derived in the lowermost stratosphere, with the most pronounced trends in the tropics. While a very good agreement is obtained between trends from merged satellite records and the CCMI REF-C2 simulation in the upper stratosphere, observed negative trends in the lower stratosphere are not reproduced by models at southern and, in particular, at northern midlatitudes, where models report an ozone increase. However, the lower stratospheric trend uncertainties are quite large, for both measured and modelled trends. Finally, 2000–2020 stratospheric ozone trends derived from the ground-based and longitudinally resolved satellite records are in close agreement, especially over the European Alpine and tropical regions

    On the Long-term Stability of Satellite and Ground-based Ozone Profile Records

    No full text
    International audienceIn recent years, many analyses of space- and ground-based data records reported signs or evidence of increasing ozone concentrations in the extrapolar upper stratosphere since the late 1990s. However, the magnitude and significance of the trend estimates vary from one study to another, prompting the ozone research community to further investigate the causes of these differences. A broader consensus has emerged in the past year, placing the positive trend in the upper stratosphere on solid ground and heralding the start of an observation-based exploration of the recovery of stratospheric ozone. More accurate trend estimates are needed to identify the geophysical processes contributing to the recovery and their relative importance. Uncovering seasonal and spatial trend patterns will be key in reaching this objective, not just in the extrapolar upper stratosphere but elsewhere as well.However, at the moment, it remains unclear whether current ozone profile observing systems are able to provide this information. We address this question with an exploration of the capabilities and limitations of current data records in space (limb/occultation sounders) and on the ground (NDACC/GAW/SHADOZ-affiliated sonde, stratospheric lidar and microwave radiometer sites) to infer decadal trends and their vertical, latitudinal and seasonal patterns. We focus on long-term stability, one of the key drivers of the ability to detect trends. We present updated results of a comprehensive analysis that allowed us to quantify the drift of satellite data relative to the ground-based networks (Hubert et al., 2016). In a companion analysis we exploited the satellite data to uncover temporal and spatial inhomogeneities in the ground-based time series, some of which were traced to known changes occurring at different moments across the network. These changes add to the challenge to derive unbiased ozone trends from ground-based observations and they impede our ability to constrain satellite drift to the level required for current and future ozone trend assessments. We conclude that ongoing efforts to homogenise the ground-based data records are essential
    corecore