3 research outputs found

    RNPomics: Defining the ncRNA transcriptome by cDNA library generation from ribonucleo-protein particles

    Get PDF
    Up to 450 000 non-coding RNAs (ncRNAs) have been predicted to be transcribed from the human genome. However, it still has to be elucidated which of these transcripts represent functional ncRNAs. Since all functional ncRNAs in Eukarya form ribonucleo-protein particles (RNPs), we generated specialized cDNA libraries from size-fractionated RNPs and validated the presence of selected ncRNAs within RNPs by glycerol gradient centrifugation. As a proof of concept, we applied the RNP method to human Hela cells or total mouse brain, and subjected cDNA libraries, generated from the two model systems, to deep-sequencing. Bioinformatical analysis of cDNA sequences revealed several hundred ncRNP candidates. Thereby, ncRNAs candidates were mainly located in intergenic as well as intronic regions of the genome, with a significant overrepresentation of intron-derived ncRNA sequences. Additionally, a number of ncRNAs mapped to repetitive sequences. Thus, our RNP approach provides an efficient way to identify new functional small ncRNA candidates, involved in RNP formation

    Molecular profiling of advanced soft-tissue sarcomas: the MULTISARC randomized trial

    Get PDF
    Background: Soft-tissue sarcomas (STS) represent a heterogeneous group of rare tumors including more than 70 different histological subtypes. High throughput molecular analysis (next generation sequencing exome [NGS]) is a unique opportunity to identify driver mutations that can change the usual one-size-fits-all treatment paradigm to a patient-driven therapeutic strategy. The primary objective of the MULTISARC trial is to assess whether NGS can be conducted for a large proportion of metastatic STS participants within a reasonable time, and, secondarily to determine whether a NGS-guided therapeutic strategy improves participant's outcome. Methods: This is a randomized, multicentre, phase II/III trial inspired by the design of umbrella and biomarker-driven trials. The setting plans up to 17 investigational centres across France and the recruitment of 960 participants. Participants aged at least 18 years, with unresectable locally advanced and/or metastatic STS confirmed by the French sarcoma pathological reference network, are randomized according to 1:1 allocation ratio between the experimental arm "NGS" and the standard "No NGS". NGS will be considered feasible if (i) NGS results are available and interpretable, and (ii) a report of exome sequencing including a clinical recommendation from a multidisciplinary tumor board is provided to investigators within 7 weeks from reception of the samples on the biopathological platform. A feasibility rate of more than 70% is expected (null hypothesis: 70% versus alternative hypothesis: 80%). In terms of care, participants randomized in "No NGS" arm and who fail treatment will be able to switch to the NGS arm at the request of the investigator. Discussion: The MULTISARC trial is a prospective study designed to provide high-level evidence to support the implementation of NGS in routine clinical practice for advanced STS participants, on a large scale. Trial registration: clinicaltrial.gov NCT03784014

    Multiple Roles of Alu-Related Noncoding RNAs

    No full text
    Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions
    corecore