132 research outputs found

    Galerkin-Laguerre Spectral Solution of Self-Similar Boundary Layer Problems

    Get PDF
    In this work the Laguerre basis for the biharmonic equation introduced by Jie Shen is employed in the spectral solution of self-similar problems of the boundary layer theory. An original Petrov-Galerkin formulation of the Falkner-Skan equation is presented which is based on a judiciously chosen special basis function to capture the asymptotic behaviour of the unknown. A spectral method of remarkable simplicity is obtained for computing Falkner-Skan-Cooke boundary layer flows. The accuracy and efficiency of the Laguerre spectral approximation is illustrated by determining the linear stability of nonseparated and separated flows according to the Orr-Sommerfeld equation. The pentadiagonal matrices representing the derivative operators are explicitly provided in an Appendix to aid an immediate implementation of the spectral solution algorithms

    Electrochemical Characterization and CO2 Reduction Reaction of a Family of Pyridazine-Bridged Dinuclear Mn(I) Carbonyl Complexes

    Get PDF
    Three recently synthesized neutral dinuclear carbonyl manganese complexes with the pyridazine bridging ligand, of general formula [Mn2(μ-ER)2(CO)6(μ-pydz)] (pydz = pyridazine; E = O or S; R = methyl or phenyl), have been investigated by cyclic voltammetry in dimethylformamide and acetonitrile both under an inert argon atmosphere and in the presence of carbon dioxide. This family of Mn(I) compounds behaves interestingly at negative potentials in the presence of CO2. Based on this behavior, which is herein discussed, a rather efficient catalytic mechanism for the CO2 reduction reaction toward the generation of CO has been hypothesized

    Dinuclear rhenium pyridazine complexes containing bridging chalcogenide anions : synthesis, characterization and computational study

    Get PDF
    The synthesis of a series of neutral dinuclear rhenium complexes of the general formula [Re2(m-ER)2(CO)6- (m-pydz)] (pydz = pyridazine; E = S, Se or Te; R = methyl or phenyl; the TeMe is not included) has been carried out via new, either one-pot or two-step, procedures. The one-pot synthesis consists of the oxidative addition of RE\u2013ER across the Re\u2013Re bond of [Re2(CO)10], in the presence of 1 equivalent of pyridazine, and affords the corresponding dinuclear complexes in high yields (ca. 85%). Furthermore, a general two-step procedure has been carried out, which involves the synthesis of heterocubane-like [Re4(m3-ER)4(CO)12] molecules and their reaction with pyridazine, quantitatively affording the corresponding dinuclear species through a symmetric [2+2] fragmentation pathway. The molecular structure of the complexes has been elucidated by single crystal XRD analysis, and TD-DFT calculations predicted the existence of conformers differing in the orientation of the chalcogen substituents with respect to the pyridazine ligand. The relative stabilities and the activation barriers for the interconversion have been calculated, observing a regular trend that has been rationalized depending on the hybridization of the chalcogen atom. Variable temperature NMR studies experimentally confirmed the theoretical prediction, showing, in solution, two conformers with different relative amounts and different interconversion rates between them, depending on the chalcogen nature. From the electrochemical point of view the S, Se and Te complexes display a bi-electronic reversible oxidation peak, differently from the two mono-electronic irreversible oxidation peaks previously observed for the O derivatives. Moreover, a progressive narrowing of the HOMO\u2013LUMO gap on going from O to Te, arising from the increase of the HOMO level, has been observed. This is in line with the decreasing electron-withdrawing strength of the chalcogenide bridging ligand, so that the energy gap for the telluride derivative is 1.64 eV, the smallest value in the whole family of the di-rhenium pyridazine complexes. The spectroscopic HOMO\u2013LUMO gap parallels this trend, with a significant red-shift of the metal-to-ligand charge transfer absorption, making the telluride complex highly promising as a photosensitizer in the field of solar energy conversion. In agreement with the narrow HOMO\u2013LUMO gap, no photoluminescence has been observed upon optical excitation

    Dinuclear Re(I) Complexes as New Electrocatalytic Systems for CO2 Reduction

    Get PDF
    A family of dinuclear tricarbonyl rhenium (I) complexes containing bridging 1,2-diazine ligand and halide anions as ancillary ligands and able to catalyze CO2 reduction is presented. Electrochemical studies show that the highest catalytic efficiency is obtained for the complex containing the 4,5-bipenthyl-pyridazine and iodide as ancillary halogen ligands. This complex gives rise to TOF=15 s−1 that clearly outperforms the values reported for the benchmark mononuclear Re(CO)3Cl(bpy) (11.1 s−1). The role of the substituents on the pyridazine ligand and the nature of the bridging halide ligands on the catalytic activity have been deeply investigated through a systematic study on the structure-properties relationship to understand the improved catalytic efficiencies of this class of complexes

    Luminescent conjugates between dinuclear rhenium complexes and 17α-ethynylestradiol: synthesis, photophysical characterization, and cell imaging

    Get PDF
    Three new luminescent conjugates between dinuclear rhenium complexes and an estradiol, namely E2-Re, are described. The derivatives have the general formula [Re2(\u3bc-Cl)2(CO)6(\u3bc-R-pydz-17\u3b1-ethynylestradiol)] (R-pydz = functionalized 1,2-pyridazine), where the estradiol moiety is covalently bound to the \u3b2 position of the pyridazine ligand. Different synthetic pathways are investigated, including the inverse-type [4 + 2] Diels Alder cycloaddition reaction between the electron poor 1,2,4,5-tetrazine and 17\u3b1-ethynylestradiol for the synthesis of E2-Re1. The three E2-Re conjugates are purified on silica gel and isolated in a spectroscopically pure form in moderate to good yields (28-50%). All the E2-Re conjugates are comprehensively characterized from the spectroscopic and photophysical points of view. Cellular internalization experiments on human MCF-7 and 231 cells are also reported, displaying interesting staining differences depending on the nature of the spacer linking the estradiol unit to the organometallic fragment. Furthermore, the suitability of these conjugates to also stain simple multicellular organisms, i.e. Ciona intestinalis embryos and larvae at different stages of development, is reported here for the first time

    Dirhenium Coordination Complex Endowed with an Intrinsically Chiral Helical-Shaped Diphosphine Oxide

    Get PDF
    A one-pot, multicomponent strategy was used to synthesize the first example of the dirhenium carbonyl coordination complex 2, in which the two metal atoms are connected through a chiral helical-shaped diphosphine oxide. Thanks to the flexibility of the helix of helicene 1, complex 2 was isolated in quite a good yield as a stable compound. It was characterized by analytical and spectroscopic techniques as well as by single-crystal X-ray analysis, which confirmed the chemical structure and the peculiar architecture of 2. In addition, computational studies were in agreement with the transitions observed in the experimental UV\u2013vis spectrum, revealing the presence of two bands with maxima at about 520 (metal-to-ligand charge transfer) and 400 nm (IL

    Biophysical characterisation, antitumor activity and MOF encapsulation of a half-sandwich ruthenium(ii) mitoxantronato system

    Get PDF
    The novel non-conventional metallodrug [(\u3b76-p-cymene)2Ru2mitoxantronato]Cl2 (1) exhibits redox activity, DNA intercalation ability, cathepsin B and D inhibition and in vitro antitumor activity able to circumvent cisplatin resistance. Moreover, 1 can be successfully incorporated into MIL100(Fe) as a proof of concept of the feasibility of metal\u2013organic frameworks as carriers of non-conventional drugs

    Molecular architecture of redox-active half-sandwich Ru(ii) cyclic assemblies : interactions with biomolecules and anticancer activity

    Get PDF
    Tetranuclear cationic open boxes non-covalently bind DNA major groove. By contrast, they covalently bind cysteine after ligand exchange reactions. In addition, these systems exhibit potent antitumour activity circumventing cisplatin resistance

    A highly porous interpenetrated MOF-5-type network based on bipyrazolate linkers

    Get PDF
    A novel cobalt(II) metal organic framework containing two interpenetrated nets with the cubic pcu-a topology of MOF-5 has been synthesized and characterized. In spite of being interpenetrated, this material exhibits a highly accessible porous structure

    Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours

    Get PDF
    The release of anthropogenic toxic pollutants into the atmosphere is a worldwide threat of growing concern. In this regard, it is possible to take advantage of the high versatility of MOFs materials in order to develop new technologies for environmental remediation purposes. Consequently, one of the main scientific challenges to be achieved in the field of MOF research should be to maximize the performance of these solids towards the sensing, capture and catalytic degradation of harmful gases and vapors by means of a rational control of size and reactivity of the pore walls that are directly accessible to guest molecules.The authors are grateful for the generous support by the Spanish Ministries of Economy (project: CTQ2011-22787) and Defense (COINCIDENTE Program) as well as Junta de Andalucia (P09-FQM-4981)
    • …
    corecore