371 research outputs found

    Pathways to care and outcomes among hospitalised HIV-seropositive persons with cryptococcal meningitis in South Africa.

    Get PDF
    INTRODUCTION: Cryptococcus causes 15% of AIDS-related deaths and in South Africa, with its high HIV burden, is the dominant cause of adult meningitis. Cryptococcal meningitis (CM) mortality is high, partly because patients enter care with advanced HIV disease and because of failure of integrated care following CM diagnosis. We evaluated pathways to hospital care, missed opportunities for HIV testing and initiation of care. METHODS: We performed a cross-sectional study at five public-sector urban hospitals. We enrolled adults admitted with a first or recurrent episode of cryptococcal meningitis. Study nurses conducted interviews, supplemented by a prospective review of medical charts and laboratory records. RESULTS: From May to October 2015, 102 participants were enrolled; median age was 40 years (interquartile range [IQR] 33.9-46.7) and 56 (55%) were male. In the six weeks prior to admission, 2/102 participants were asymptomatic, 72/100 participants sought care at a public-sector facility, 16/100 paid for private health care. The median time from seeking care to admission was 4 days (IQR, 0-27 days). Of 94 HIV-seropositive participants, only 62 (66%) knew their status and 41/62 (66%) had ever taken antiretroviral treatment. Among 13 participants with a known previous CM episode, none were taking fluconazole maintenance therapy. In-hospital management was mostly amphotericin B; in-hospital mortality was high (28/92, 30%). Sixty-four participants were discharged, 92% (59/64) on maintenance fluconazole, 4% (3/64) not on fluconazole and 3% (2/64) unknown. Twelve weeks post-discharge, 31/64 (48%) participants were lost to follow up. By 12 weeks post discharge 7/33 (21%) had died. Interviewed patients were asked if they were still on fluconazole, 11% (2/18) were not. CONCLUSIONS: Among hospitalised participants with CM, there were many missed opportunities for HIV care and linkage to ART prior to admission. Universal reflex CrAg screening may prompt earlier diagnosis of cryptococcal meningitis but there is a wider problem of timely linkage to care for HIV-seropositive people

    Genomic Diversity and Antimicrobial Susceptibility of Invasive Neisseria meningitidis in South Africa, 2016–2021

    Get PDF
    Background: Invasive meningococcal isolates in South Africa have in previous years (<2008) been characterized by serogroup B, C, W, and Y lineages over time, with penicillin intermediate resistance (peni) at 6%. We describe the population structure and genomic markers of peni among invasive meningococcal isolates in South Africa, 2016–2021. Methods: Meningococcal isolates were collected through national, laboratory-based invasive meningococcal disease (IMD) surveillance. Phenotypic antimicrobial susceptibility testing and whole-genome sequencing were performed, and the mechanism of reduced penicillin susceptibility was assessed in silico. Results: Of 585 IMD cases reported during the study period, culture and PCR-based capsular group was determined for 477/585 (82%); and 241/477 (51%) were sequenced. Predominant serogroups included NmB (210/477; 44%), NmW (116/477; 24%), NmY (96/477; 20%), and NmC (48/477; 10%). Predominant clonal complexes (CC) were CC41/44 in NmB (27/113; 24%), CC11 in NmW (46/56; 82%), CC167 in NmY (23/44; 53%), and CC865 in NmC (9/24; 38%). Peni was detected in 16% (42/262) of isolates, and was due to the presence of a penA mosaic, with the majority harboring penA7, penA9, or penA14. Conclusions: IMD lineages circulating in South Africa were consistent with those circulating prior to 2008; however, peni was higher than previously reported, and occurred in a variety of lineages

    Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease

    Can pneumococcal meningitis surveillance be used to assess the impact of pneumococcal conjugate vaccine on total invasive pneumococcal disease? A case-study from South Africa, 2005–2016

    Get PDF
    INTRODUCTION : South Africa introduced seven-valent pneumococcal conjugate vaccine (PCV7) in 2009 and PCV13 in 2011. We aimed to compare the estimated impact of PCV on pneumococcal meningitis (PM) to impact of PCV on total invasive pneumococcal disease (tIPD) based on risk reduction after PCV introduction. METHODS : We conducted national, laboratory-based surveillance for tIPD during 2005–2016. We estimated and compared rates of PCV13 and non-PCV13 serotype disease among tIPD and PM in individuals aged <5 years and ≥5 years, and compared these rates between the 2005–2008 pre-PCV introduction period and two time points after PCV introduction, 2012 and 2016. RESULTS : We enrolled 45,853 tIPD cases; 17,251 (38%) were PM. By 2016, IPD caused by all serotypes decreased 55% (95%CI −57% to −53%) for tIPD, and 54% for PM (95%CI −58% to −51%), 0.7% difference between estimates (p = 0.7). No significant differences were observed between PCV7-serotype disease reduction in tIPD and PM in both age groups or the additional 6 serotypes included in PCV13 in <5 year olds in 2012 and 2016. In 2012 there was a significant difference between increases in non-PCV13 serotype disease in those ≥5 years for tIPD and PM (32% greater increase in PM, p < 0.001), but this difference was absent by 2016. There was a significant difference between the estimated decrease in additional PCV13 type disease in 2016 between tIPD and PM for those aged ≥5 years (28% greater reduction in PM, p = 0.008). CONCLUSION : PM showed similar reductions to tIPD seven years after PCV introduction in vaccine serotype disease in those <5 years, and increases in non-vaccine serotype disease in all ages.The National Institute for Communicable Diseases a division of the National Health Laboratory Service, South Africa; the United States Agency for International Development’s Antimicrobial Resistance Initiative, United States of America, transferred via a cooperative agreement [U60/CCU022088] from the United States Centers for Disease Control and Prevention, United States if Ameriva; and the United States Centers for Disease Control and Prevention [U62/CCU022901], United States of America.http://www.elsevier.com/locate/vaccine2020-09-10hj2019School of Health Systems and Public Health (SHSPH

    Eff ectiveness of the 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease in South African children: a case-control study

    Get PDF
    Background The 13-valent pneumococcal conjugate vaccine (PCV13) was designed to include disease-causing serotypes that are important in low-income and middle-income countries. Vaccine eff ectiveness estimates are scarce in these settings. South Africa replaced PCV7 with PCV13 in 2011 using a 2 + 1 schedule. We aimed to assess the eff ectiveness of two or more doses of PCV13 against invasive pneumococcal disease in children with HIV infection and in those not infected with HIV. Methods Cases of invasive pneumococcal disease in children aged 5 years or younger were identifi ed through national laboratory-based surveillance. Isolates were serotyped with the Quellung reaction or PCR. We sought in-hospital controls for every case, matched for age, HIV status, and study site. We aimed to enrol four controls for every case not infected with HIV and six controls for every case with HIV infection (case-control sets). With conditional logistic regression, we calculated vaccine eff ectiveness as a percentage, with the equation 1 – [adjusted odds ratio for vaccination] × 100. We included data from an earlier investigation of PCV7 to assess vaccine eff ectiveness in children exposed to but not infected with HIV and in malnourished children not infected with HIV. Findings Between January, 2012, and December, 2014, we enrolled children aged 16 weeks or older to our study: 240 were cases not infected with HIV, 75 were cases with HIV infection, 1118 were controls not infected with HIV, and 283 were controls with HIV infection. The eff ectiveness of two or more doses of PCV13 against PCV13-serotype invasive pneumococcal disease was 85% (95% CI 37 to 96) among 11 case-control sets of children not infected with HIV and 91% (–35 to 100) among three case-control sets of children with HIV infection. PCV13 eff ectiveness among 26 case-control sets of children not infected with HIV was 52% (95% CI –12 to 79) against all-serotype invasive pneumococcal disease and 94% (44 to 100) for serotype 19A. Vaccine eff ectiveness against PCV7-serotype invasive pneumococcal disease was 87% (95% CI 38 to 97) in children exposed to HIV but uninfected and 90% (53 to 98) in malnourished children not infected with HIV. Interpretation Our results indicate that PCV13 in a 2 + 1 schedule is eff ective for preventing vaccine-type pneumococcal infections in young children not infected with HIV, including those who are malnourished or who have been exposed to HIV. Although the point estimate for PCV13 vaccine eff ectiveness in children infected with HIV was high, it did not reach signifi cance, possibly because of the small sample size. These fi ndings support recommendations for widespread use of pneumococcal conjugate vaccine in low-income and middle-income countries

    Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?

    Get PDF
    International audienc

    HIV Infection and the Epidemiology of Invasive Pneumococcal Disease (IPD) in South African Adults and Older Children Prior to the Introduction of a Pneumococcal Conjugate Vaccine (PCV).

    Get PDF
    INTRODUCTION: Streptococcus pneumoniae is the commonest cause of bacteremic pneumonia among HIV-infected persons. As more countries with high HIV prevalence are implementing infant pneumococcal conjugate vaccine (PCV) programs, we aimed to describe the baseline clinical characteristics of adult invasive pneumococcal disease (IPD) in the pre-PCV era in South Africa in order to interpret potential indirect effects following vaccine use. METHODS: National, active, laboratory-based surveillance for IPD was conducted in South Africa from 1 January 2003 through 31 December 2008. At 25 enhanced surveillance (ES) hospital sites, clinical data, including HIV serostatus, were collected from IPD patients ≥ 5 years of age. We compared the clinical characteristics of individuals with IPD in those HIV-infected and -uninfected using multivariable analysis. PCV was introduced into the routine South African Expanded Program on Immunization (EPI) in 2009. RESULTS: In South Africa, from 2003-2008, 17 604 cases of IPD occurred amongst persons ≥ 5 years of age, with an average incidence of 7 cases per 100 000 person-years. Against a national HIV-prevalence of 18%, 89% (4190/4734) of IPD patients from ES sites were HIV-infected. IPD incidence in HIV-infected individuals is 43 times higher than in HIV-uninfected persons (52 per 100 000 vs. 1.2 per 100 000), with a peak in the HIV-infected elderly population of 237 per 100 000 persons. Most HIV-infected individuals presented with bacteremia (74%, 3 091/4 190). HIV-uninfected individuals were older; and had more chronic conditions (excluding HIV) than HIV-infected persons (39% (210/544) vs. 19% (790/4190), p<0.001). During the pre-PCV immunization era in South Africa, 71% of serotypes amongst HIV-infected persons were covered by PCV13 vs. 73% amongst HIV-uninfected persons, p = 0.4, OR 0.9 (CI 0.7-1.1). CONCLUSION: Seventy to eighty-five percent of adult IPD in the pre-PCV era were vaccine serotypes and 93% of cases had recognized risk factors (including HIV-infection) for pneumococcal vaccination. These data describe the epidemiology of IPD amongst HIV-infected and -uninfected adults during the pre-PCV era and provide a robust baseline to calculate the indirect effect of PCV in future studies

    Risk factors for bacterial zoonotic pathogens in acutely febrile patients in Mpumalanga Province, South Africa

    Get PDF
    Endemic zoonoses, such as Q fever and spotted fever group (SFG) rickettsiosis, are prevalent in South Africa, yet often undiagnosed. In this study, we reviewed the demographics and animal exposure history of patients presenting with acute febrile illness to community health clinics in Mpumalanga Province to identify trends and risk factors associated with exposure to Coxiella burnetii , the causative agent of Q fever, and infection by SFG Rickettsia spp. Clinical and serological data and questionnaires elucidating exposure to animals and their products were obtained from 141 acutely febrile patients between 2012 and 2016. Exposure or infection status to C. burnetii and SFG Rickettsia spp. was determined by presence of IgG or IgM antibodies. Logistic regression models were built for risk factor analysis. Clinical presentation of patients infected by SFG rickettsiosis was described. There were 37/139 (27%) patients with a positive C. burnetii serology, indicative of Q fever exposure. Patients who had reported attending cattle inspection facilities (“dip tanks”) were 9.39 times more likely to be exposed to Q fever (95% CI: 2.9–30.4). Exposure risk also increased with age (OR: 1.03, 95% CI: 1.002–1.06). Twenty‐one per cent of febrile patients (24/118) had evidence of acute infection by SFG Rickettsia spp. Similarly, attending cattle inspection facilities was the most significant risk factor (OR: 8.48, 95% CI: 1.58–45.60). Seropositivity of females showed a significant OR of 8.0 when compared to males (95% CI: 1.49–43.0), and consumption of livestock was associated with a decreased risk (OR: 0.02, 95% CI: 0.001–0.54). A trend between domestic cat contact and SFG rickettsiosis was also noted, albeit borderline non‐significant. In this endemic region of South Africa, an understanding of risk factors for zoonotic pathogens, including exposure to domestic animals, can help clinic staff with diagnosis and appropriate therapeutic management of acutely febrile patients as well as identify target areas for education and prevention strategies.The National Institute for Communicable Disease, the University of Pretoria, and the University of California, Davis.http://wileyonlinelibrary.com/journal/zph2020-08-01hj2020Centre for Veterinary Wildlife StudiesVeterinary Tropical Disease

    Estimated severe pneumococcal disease cases and deaths before and after pneumococcal conjugate vaccine introduction in children younger than 5 years of age in South Africa

    Get PDF
    INTRODUCTION : Streptococcus pneumoniae is a leading cause of severe bacterial infections globally. A full understanding of the impact of pneumococcal conjugate vaccine (PCV) on pneumococcal disease burden, following its introduction in 2009 in South Africa, can support national policy on PCV use and assist with policy decisions elsewhere. METHODS : We developed a model to estimate the national burden of severe pneumococcal disease, i.e. disease requiring hospitalisation, pre- (2005±2008) and post-PCV introduction (2012± 2013) in children aged 0±59 months in South Africa. We estimated case numbers for invasive pneumococcal disease using data from the national laboratory-based surveillance, adjusted for specimen-taking practices. We estimated non-bacteraemic pneumococcal pneumonia case numbers using vaccine probe study data. To estimate pneumococcal deaths, we applied observed case fatality ratios to estimated case numbers. Estimates were stratified by HIV status to account for the impact of PCV and HIV-related interventions. We assessed how different assumptions affected estimates using a sensitivity analysis. Bootstrapping created confidence intervals. RESULTS : In the pre-vaccine era, a total of approximately 107,600 (95% confidence interval [CI] 83,000±140,000) cases of severe hospitalised pneumococcal disease were estimated to have occurred annually. Following PCV introduction and the improvement in HIV interventions, 41,800 (95% CI 28,000±50,000) severe pneumococcal disease cases were estimated in 2012±2013, a rate reduction of 1,277 cases per 100,000 child-years. Approximately 5000 (95% CI 3000±6000) pneumococcal-related annual deaths were estimated in the prevaccine period and 1,900 (95% CI 1000±2500) in 2012±2013, a mortality rate difference of 61 per 100,000 child-years. CONCLUSIONS : While a large number of hospitalisations and deaths due to pneumococcal disease still occur among children 0±59 months in South Africa, we found a large reduction in this estimate that is temporally associated with PCV introduction. In HIV-infected individuals the scale-up of other interventions, such as improvements in HIV care, may have also contributed to the declines in pneumococcal burden.S1 Text. Supplementary material: Estimated severe pneumococcal disease cases and deaths before and after pneumococcal conjugate vaccine introduction in children younger than 5 years of age in South Africa.S1 Table. Population denominators from the Thembisa model for children <5 years of age in South Africa, 2005-2008 and 2012-2013.S2 Table. Sensitivity analysis for case numbers showing key variables altered in analysis, 2005-2008 and 2012-2013.S3 Table. Sensitivity analysis for numbers of deaths showing key variables altered in analysis, 2005-2008 and 2012-2013.S1 Fig. Initial step in estimating the burden of invasive and non-invasive pneumococcal cases in children aged <5 years in South Africa, 2005-2008 and 2012-2013.S2 Fig. Second step in estimating the burden of invasive and non-invasive pneumococcal cases in children <5 years in South Africa, 2005-2008 and 2012-2013.S3 Fig. Tornado sensitivity diagram representing change in pneumococcal case estimates in children <5 years of age in the pre-vaccine era, when values of key variables are modified.S4 Fig. Tornado sensitivity diagram representing change in pneumococcal death estimates in children <5 years of age in the pre-vaccine era, when values of key variables are modified.The National Institute for Communicable Diseases/National Health Laboratory Service (NICD/NHLS), South Africa and the Centers for Disease Control and Prevention (CDC) Global AIDS Program (GAP) Cooperative Agreement (U62/PSO022901).http://www.plosone.orgam2017Paediatrics and Child Healt
    corecore