133 research outputs found

    Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    Get PDF
    The bHLH transcription factor, PHYTOCHROME INTERACTING FACTOR 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this interaction, we developed a yeast reverse-hybrid screen. Fifteen individual mutations identified in this screen, or in previous genetic screens for Arabidopsis mutants showing reduced sensitivity to red light, were shown to also disrupt light-induced binding of phyB to PIF3 in in vitro co-immunoprecipitation assays. These phyB missense mutants fall into two general classes: Class I (eleven mutants) containing those defective in light signal perception, due to aberrant chromophore attachment or photoconversion, and Class II (four mutants) containing those normal in signal perception, but defective in the capacity to transduce this signal to PIF3. By generating a homology model for the three-dimensional structure of the Arabidopsis phyB chromophore-binding region, based on the crystal structure of Deinococcus radiodurans phytochrome, we predict that three of the four Class II mutated phyB residues are solvent exposed in a cleft between the presumptive PAS and GAF domains. This deduction suggests that these residues could be directly required for the physical interaction of phyB with PIF3. Because these three residues are also necessary for phyB-imposed inhibition of hypocotyl elongation in response to red light, they are functionally necessary for signal transfer from photoactivated phyB, not only to PIF3 and other related bHLH transcription factors tested here, but also to other downstream signaling components involved in regulating seedling deetiolation

    The Protein Phosphatase 7 Regulates Phytochrome Signaling in Arabidopsis

    Get PDF
    The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems

    Cooperation among cancer cells: applying game theory to cancer

    Get PDF
    Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation

    Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Neisseria </it>contains two important yet very different pathogens, <it>N. meningitidis </it>and <it>N. gonorrhoeae</it>, in addition to non-pathogenic species, of which <it>N. lactamica </it>is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally.</p> <p>Results</p> <p>Non-pathogenic <it>N. lactamica </it>exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal <it>cps </it>region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent.</p> <p>Conclusion</p> <p>The three <it>Neisseria </it>species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.</p

    Arabidopsis cell expansion is controlled by a photothermal switch

    Get PDF
    In Arabidopsis, the seedling hypocotyl has emerged as an exemplar model system to study light and temperature control of cell expansion. Light sensitivity of this organ is epitomized in the fluence rate response where suppression of hypocotyl elongation increases incrementally with light intensity. This finely calibrated response is controlled by the photoreceptor, phytochrome B, through the deactivation and proteolytic destruction of phytochrome-interacting factors (PIFs). Here we show that this classical light response is strictly temperature dependent: a shift in temperature induces a dramatic reversal of response from inhibition to promotion of hypocotyl elongation by light. Applying an integrated experimental and mathematical modelling approach, we show how light and temperature coaction in the circuitry drives a molecular switch in PIF activity and control of cell expansion. This work provides a paradigm to understand the importance of signal convergence in evoking different or non-intuitive alterations in molecular signalling

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Targeting microRNAs as key modulators of tumor immune response

    Full text link
    corecore