4 research outputs found

    Rap2B promotes proliferation, migration and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway

    Get PDF
    Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer

    The Design and Study of a Four-Coil Oil Multi-Pollutant Detection Sensor

    No full text
    The operating environment of large mechanical equipment on ships is extremely harsh. Under such harsh conditions, it is necessary to effectively monitor and assess the health status of machinery and equipment and to take appropriate maintenance measures to ensure the normal operation of the ship and the safety of the lives and property of the crew. However, currently used methods are less effective in detecting non-ferromagnetic abrasive particles and non-metallic contaminants and may not be able to respond to certain emergencies promptly. Therefore, in this paper, a quad-solenoid coil multi-contaminant oil detection sensor is proposed to detect metallic abrasive particles and non-metallic contaminants using the voltage–capacitance dual mode. We provide an analytical expression for the magnetic field strength of the present sensor and develop a corresponding mathematical model. In order to verify its accuracy, we compared the model results with finite element analysis and verified them experimentally. Analysis of the experimental results shows that by switching the detection mode of the sensor, ferromagnetic metal particles, non-ferromagnetic metal particles, and non-metallic contaminants in the oil can be identified according to the different experimental signal curves. The sensor recognizes ferromagnetic particles over 70 μm in diameter, non-ferromagnetic particles over 220 μm in diameter, water droplets over 100–110 μm in diameter, and air bubbles over 180–190 μm in diameter. By comparing the sensor with existing sensors, the sensor can provide accurate information about various pollutants, help maintenance personnel to develop a reasonable maintenance program, and reduce the maintenance cost of ship machinery
    corecore