352 research outputs found

    MicroRNA-29a Inhibits Growth, Migration and Invasion of Melanoma A375 Cells in Vitro by Directly Targeting BMI1

    Get PDF
    Background/Aims: Melanoma is one of the most aggressive malignant tumors, with increasing incidence, poor prognosis, and lack of any effective targeted therapies. Abnormal expression of miR-29a has been found in several types of cancers, including melanoma. In this study, experiments were performed to investigate the role of miR-29a in melanoma, and the molecular mechanism by which miR-29a represses melanoma. Methods: miR-29 and Bmi1 expression was examined by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability, apoptosis, migration and invasion were respectively determined by Cell Counting Kit-8 assay, Propidium iodide (PI) fluorescein isothiocynate (FITC)-Annexin V staining assay, wound healing assay and transwell assay. Luciferase reporter assay was performed to determine a target gene of miR-29a. Western blot was used to analyze protein expression of apoptosis-related proteins, Bmi1, Wnt/β-catenin and Nuclear factor-κB (NF-κB) pathway target genes. Results: miR-29a was down-regulated in all tested melanoma cell lines. Up-regulation of miR-29a effectively inhibited cell viability, migration, and invasion, but promoted apoptosis in A375 cells. Bmi1 was a direct target gene of miR-29a. Transfection with miR-29a mimic decreased cell migration and invasion and Bmi1 expression in Malme-3M cells, SK-MEL-2, SK-MEL-5, and M14 cell lines. Moreover, miR-29a might suppress growth, migration and invasion of A375 cells by negatively regulating Bmi1. In addition, our results demonstrated that transfection with miR-29a mimic effectively blocked Wnt/β-catenin and NF-κB pathways via down-regulating Bmi1. Conclusion: miR-29a could be functioned as a potential tumor suppressor through direct regulation of Bmi1 in melanoma cells

    WristSketcher: Creating Dynamic Sketches in AR with a Sensing Wristband

    Full text link
    Restricted by the limited interaction area of native AR glasses (e.g., touch bars), it is challenging to create sketches in AR glasses. Recent works have attempted to use mobile devices (e.g., tablets) or mid-air bare-hand gestures to expand the interactive spaces and can work as the 2D/3D sketching input interfaces for AR glasses. Between them, mobile devices allow for accurate sketching but are often heavy to carry, while sketching with bare hands is zero-burden but can be inaccurate due to arm instability. In addition, mid-air bare-hand sketching can easily lead to social misunderstandings and its prolonged use can cause arm fatigue. As a new attempt, in this work, we present WristSketcher, a new AR system based on a flexible sensing wristband for creating 2D dynamic sketches, featuring an almost zero-burden authoring model for accurate and comfortable sketch creation in real-world scenarios. Specifically, we have streamlined the interaction space from the mid-air to the surface of a lightweight sensing wristband, and implemented AR sketching and associated interaction commands by developing a gesture recognition method based on the sensing pressure points on the wristband. The set of interactive gestures used by our WristSketcher is determined by a heuristic study on user preferences. Moreover, we endow our WristSketcher with the ability of animation creation, allowing it to create dynamic and expressive sketches. Experimental results demonstrate that our WristSketcher i) faithfully recognizes users' gesture interactions with a high accuracy of 96.0%; ii) achieves higher sketching accuracy than Freehand sketching; iii) achieves high user satisfaction in ease of use, usability and functionality; and iv) shows innovation potentials in art creation, memory aids, and entertainment applications

    Mussel-Inspired and Bioclickable Peptide Engineered Surface to Combat Thrombosis and Infection

    Get PDF
    Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to tailor the surface functionalities of tubing and catheters. Inspired by mussel adhesive foot protein, a bioclickable peptide mimic (DOPA)(4)-azide-based structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry. Then, the dibenzylcyclooctyne (DBCO) modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated copper ions and the DBCO-modified antimicrobial peptide (DBCO-AMP) are clicked onto the grafted surfaces via bio-orthogonal reaction. The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous s-nitrosothiols to resist adhesion/activation of platelets, thus preventing the formation of thrombosis. Overall, this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.Peer reviewe

    Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean

    Get PDF
    Palmitic acid bi-alleles of Map-6064 in three subpopulations. (TIFF 1235 kb

    Structure and permeation of organic-inorganic hybrid membranes composed of poly(vinyl alcohol) and polysilisesquioxane

    Get PDF
    Organic-inorganic hybrid membranes with high separation performance were prepared by the incorporation of polysilisesquioxane (PSS) into a poly(vinyl alcohol) (PVA) matrix in order to solve the trade-off relationship between the selectivity and permeability of PVA membranes. The incorporation of the PSS resulted in a change in the physical and chemical structure of the hybrid membranes. The crystalline region in the hybrid membranes decreased with increasing PSS content. The hydrophilicity of the hybrid membranes increased when the PSS content is below 3 wt%, and then decreased. Silica particles formed on the surface and in the interior of the hybrid membranes due to the PSS conglomeration, and the surface roughness of the hybrid membranes increased linearly with increasing PSS content. The trade-off between permeability and selectivity was successfully solved using the hybrid membranes in pervaporation dehydration of tetrahydrofuran. The permselectivity and flux of the hybrid membranes increased simultaneously when the PSS content was below 2 wt%, whereas the permselectivity decreased when the PSS content was above 2 wt%. The hybrid membrane containing 2 wt% PSS had the highest separation factor of 1810.National Nature Science Foundation of China [50573063]; Program for New Century Excellent Talents in University ; Doctoral Program of Higher Education [2005038401

    Acute Effects of Microcystins on the Transcription of 14 Glutathione S-Transferase Isoforms in Wistar Rat

    Get PDF
    ABSTRACT: The glutathione S-transferases (GST) play important roles in the detoxification of microcystins (MCs). For better understanding of the responses of GST isforms to MCs exposure, informations about the effects of MCs on GSTs are necessary. In this experiment, we cloned the full length cDNA of 14 GST isoforms (GST alpha, kappa, mu, omega, pi, theta, zeta, and microsomal GST) from Wistar rat. The mRNA abundance of each rat GST isoform in the liver, kidney, and testis was analyzed by real time quantitative PCR. Multiple GST isoforms were constitutively expressed in all examined organs, but some isoforms were expressed at higher level in one organ than in others. The relative changes of the mRNA abundance in the liver, kidney, and testis of Wiatar rat i.v. injected with crude MCs extract at dose of 1LD 50 were also analyzed. Generally, the expression of most GSTs in the liver and testis was suppressed while that in kidney was induced after being injected with MCs. It is suggested that the transcription of GST isoforms varied in different ways within an organ and between organs of Wistar rat exposed to MCs. # 2009 Wiley Periodicals, Inc. Environ Toxicol 26: 187-194, 2011

    Evolution of East Asias Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change

    Get PDF
    Background: The evolutionary origin and historical demography of extant Arcto-Tertiary forest species in East Asia is still poorly understood. Here, we reconstructed the evolutionary and population demographic history of the two extant Euptelea species in China (E. pleiosperma) and Japan (E. polyandra). Chloroplast/nuclear DNA sequences and microsatellite loci were obtained from 36 Euptelea populations to explore molecular structure and diversity in relation to past and present distributions based on ecological niche modelling (ENM). Time-calibrated phylogenetic/phylogeographic inferences and niche-identity tests were used to infer the historical process of lineage formation. Results: Euptelea pleiosperma diverged from E. polyandra around the Late Miocene and experienced significant ecological differentiation. A near-simultaneous diversification of six phylogroups occurred during the mid-to-late Pliocene, in response to the abrupt uplift of the eastern Tibetan Plateau and an increasingly cooler and drier climate. Populations of E. pleiosperma seem to have been mostly stationary through the last glacial cycles, while those of E. polyandra reflect more recent climate-induced cycles of range contraction and expansion. Conclusions: Our results illustrate how Late Neogene climatic/tectonic changes promoted speciation and lineage diversification in East Asias Tertiary relict flora. They also demonstrate for the first time a greater variation in such species responses to glacial cycles in Japan when compared to congeners in China.(VLID)193287

    Effects of Electroacupuncture of Different Frequencies on the Release Profile of Endogenous Opioid Peptides in the Central Nerve System of Goats

    Get PDF
    To investigate the release profile of met-enkephalin, β-endorphin, and dynorphin-A in ruminants’ CNS, goats were stimulated by electroacupuncture of 0, 2, 40, 60, 80, or 100 Hz for 30 min. The pain threshold was measured using potassium iontophoresis. The peptide levels were determined with SABC immunohistochemisty. The results showed that 60 Hz increased pain threshold by 91%; its increasing rate was higher (P<0.01) than any other frequency did. 2 Hz and 100 Hz increased met-enkephalin immunoactivities (P<0.05) in nucleus accumbens, septal area, caudate nucleus, amygdala, paraventricular nucleus of hypothalamus, periaqueductal gray, dorsal raphe nucleus, and locus ceruleus. The two frequencies elicited β-endorphin release (P<0.05) in nucleus accumbens, septal area, supraoptic nucleus, ventromedial nucleus of hypothalamus, periaqueductal gray, dorsal raphe nucleus, locus ceruleus, solitary nucleus and amygdala. 60 Hz increased (P<0.05) met-enkephalin or β-endorphin immunoactivities in the nuclei and areas mentioned above, and habenular nucleus, substantia nigra, parabrachial nucleus, and nucleus raphe magnus. High frequencies increased dynorphin-A release (P<0.05) in spinal cord dorsal horn and most analgesia-related nuclei. It suggested that 60 Hz induced the simultaneous release of the three peptides in extensive analgesia-related nuclei and areas of the CNS, which may be contributive to optimal analgesic effects and species variation

    Microcystin Extracts Induce Ultrastructural Damage and Biochemical Disturbance in Male Rabbit Testis

    Get PDF
    In the present research, the changes of ultrastructures and biochemical index in rabbit testis were examined after i.p. injection with 12.5 mu g/kg microcystin (MC) extracts. Ultrastructural observation showed widened intercellular junction, distention of mitochondria, endoplasmic reticulum, and Golgi apparatus. All these changes appeared at 1, 3, and 12 h, but recovered finally. In biochemical analyses, the levels of lipid peroxidation (MDA) and H2O2 increased significantly at 1 h, indicating MC-caused oxidative stress. Finally, H2O2 decreased to the normal levels, while MDA remained at high levels. The antioxidative enzymes (CAT, SOD, GPx, GST) and antioxidants (GSH) also increased rapidly at 1 h, demonstrating a quick response of the defense systems to the oxidative stress. Finally, the activity of CAT, SOD, and GPX recovered to the normal level, while the activity of GST and the concentration of GSH remained at a high level. This suggests that the importance of MCs detoxification by GST via GSH, and the testis of rabbit contained abundant GSH. The final recovery of ultrastructure and some biochemical indexes indicates that the defense systems finally succeeded in protecting the testis against oxidative damage. In conclusion, these results indicate that the MCs are toxic to the male rabbit reproductive system and the mechanism underlying this toxicity might to be the oxidative stress caused by MCs. Although the negative effects of MCs can be overcome by the antioxidant system of testis in this study, the potential reproductive risks of l should not be neglected because of their wide occurrence. (C) 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 9-17. 2010
    • …
    corecore