729 research outputs found

    In-plane Hall effect in rutile oxide films induced by the Lorentz force

    Full text link
    The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the in-plane Hall effect (IPHE) in centrosymmetric rutile RuO2 and IrO2 single-crystal films under an in-plane magnetic field. The measured Hall resistivity is found to be proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the IPHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of in-plane anomalous Hall effects and quantum anomalous Hall effects. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family

    Functional building blocks for scalable multipartite entanglement in optical lattices

    Full text link
    Featuring excellent coherence and operated parallelly, ultracold atoms in optical lattices form a competitive candidate for quantum computation. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale-up and detect multipartite entanglement due to the lack of manipulations over local atomic spins in retro-reflected bichromatic superlattices. Here we developed a new architecture based on a cross-angle spin-dependent superlattice for implementing layers of quantum gates over moderately-separated atoms incorporated with a quantum gas microscope for single-atom manipulation. We created and verified functional building blocks for scalable multipartite entanglement by connecting Bell pairs to one-dimensional 10-atom chains and two-dimensional plaquettes of 2Ɨ42\times4 atoms. This offers a new platform towards scalable quantum computation and simulation

    Seasonality of the Transpiration Fraction and Its Controls Across Typical Ecosystems Within the Heihe River Basin

    Get PDF
    Understanding the seasonality of the transpiration fraction (T/ET) of total terrestrial evapotranspiration (ET) is vital for coupling ecological and hydrological systems and quantifying the heterogeneity among various ecosystems. In this study, a twoā€source model was used to estimate T/ET in five ecosystems over the Heihe River Basin. In situ measurements of daily energy flux, sap flow, and surface soil temperature were compared with model outputs for 2014 and 2015. Agreement between model predictions and observations demonstrates good performance in capturing the ecosystem seasonality of T/ET. In addition, sensitivity analysis indicated that the model is insensitive to errors in measured input variables and parameters. T/ET among the five sites showed only slight interannual fluctuations while exhibited significant seasonality. All the ecosystems presented a singleā€peak trend, reaching the maximum value in July and fluctuating day to day. During the growing season, average T/ET was the highest for the cropland ecosystem (0.80 Ā± 0.13), followed by the alpine meadow ecosystem (0.79 Ā± 0.12), the desert riparian forest Populus euphratica (0.67 Ā± 0.07), the Tamarix ramosissima Ledeb desert riparian shrub ecosystem (0.67 Ā± 0.06), and the alpine swamp meadow (0.55 Ā± 0.23). Leaf area index exerted a firstā€order control on T/ET and showed divergence among the five ecosystems because of different vegetation dynamics and environmental conditions (e.g., water availability or vapor pressure deficits). This study quantified transpiration fraction across diverse ecosystems within the same water basin and emphasized the biotic controls on the seasonality of the transpiration fraction

    Search for Quasi-Periodical Oscillations in Precursors of Short and Long Gamma Ray Bursts

    Full text link
    The precursors of short and long Gamma Ray Bursts (SGRBs and LGRBs) can serve as probes of their progenitors, as well as shedding light on the physical processes of mergers or core-collapse supernovae. Some models predict the possible existence of Quasi-Periodically Oscillations (QPO) in the precursors of SGRBs. Although many previous studies have performed QPO search in the main emission of SGRBs and LGRBs, so far there was no systematic QPO search in their precursors. In this work, we perform a detailed QPO search in the precursors of SGRBs and LGRBs detected by Fermi/GBM from 2008 to 2019 using the power density spectrum (PDS) in frequency domain and Gaussian processes (GP) in time domain. We do not find any convinced QPO signal with significance above 3 Ļƒ\sigma, possibly due to the low fluxes of precursors. Finally, the PDS continuum properties of both the precursors and main emissions are also studied for the first time, and no significant difference is found in the distributions of the PDS slope for precursors and main emissions in both SGRBs and LGRBs.Comment: submitte

    Observation of GRB 221009A early afterglow in X/Ī³\gamma-ray energy band

    Full text link
    The early afterglow of a Gamma-ray burst (GRB) can provide critical information on the jet and progenitor of the GRB. The extreme brightness of GRB 221009A allows us to probe its early afterglow in unprecedented detail. In this letter, we report comprehensive observation results of the early afterglow of GRB 221009A (from T0T_0+660 s to T0T_0+1860 s, where T0T_0 is the \textit{Insight}-HXMT/HE trigger time) in X/Ī³\gamma-ray energy band (from 20 keV to 20 MeV) by \textit{Insight}-HXMT/HE, GECAM-C and \textit{Fermi}/GBM. We find that the spectrum of the early afterglow in 20 keV-20 MeV could be well described by a cutoff power-law with an extra power-law which dominates the low and high energy bands respectively. The cutoff power-law EpeakE_{\rm peak} is āˆ¼\sim 30 keV and the power-law photon index is āˆ¼\sim 1.8 throughout the early afterglow phase. By fitting the light curves in different energy bands, we find that a significant achromatic break (from keV to TeV) is required at T0T_0 + 1246āˆ’26+27^{+27}_{-26} s (i.e. 1021 s since the afterglow starting time TAGT_{\rm AG}=T0T_0+225 s), providing compelling evidence of a jet break. Interestingly, both the pre-break and post-break decay slopes vary with energy, and these two slopes become closer in the lower energy band, making the break less identifiable. Intriguingly, the spectrum of the early afterglow experienced a slight hardening before the break and a softening after the break. These results provide new insights into the understanding of this remarkable GRB.Comment: Accepted for publication in ApJ Letters on 19-Jan-2024, 11 pages, 7 figures and 2 table

    The Euscaphis japonica genome and the evolution of malvids

    Get PDF
    Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the c event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.DATA AVAILABILITY STATEMENT : All sequences described in this manuscript have been submitted to the National Genomics Data Center (NGDC). The raw whole-genome data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005268/CRA004271, and the assembly and annotation data have been deposited at BioProject/GWH (https://bigd.big.ac.cn/gwh) under the accession codes PRJCA005268/GWHBCHS00000000. The raw transcriptomes data of E. japonica have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa.) under the accession codes PRJCA005298/CRA004272.SUPPLEMENTARY MATERIAL 1: Supplementary Note 1. Chromosome number assessment. Supplementary Note 2. Whole-genome duplication identification and dating. Supplementary Note 3. Observation of E. japonica seed dispersal. Supplementary Note 4. Determination of pentacyclic triterpene substances. Figure S1. Cytogenetic analysis of E. japonica. Figure S2. Genome size and heterozygosity of E. japonica estimation using 17 k-mer distribution. Figure S3. Interchromosomal of Hi-C chromosome contact map of E. japonica genome. Figure S4. Gene structure prediction results of E. japonica and other species. Figure S5. Venn diagram shows gene families of malvids. Figure S6. Phylogenetic tree constructed by chloroplast genomes from 17 species. Figure S7. Concatenated- and ASTRAL-based phylogenetic trees. Figure S8. Ks distribution in E. japonica. Figure S9. Distributions of synonymous substitutions per synonymous site (Ks) of one-to-one orthologs identified between E. japonica and P. trichocarpa and V. vinifera. Figure S10. Population structure plot. Figure S11. Fixation index (FST) heat map among E. japonica populations. Figure S12. Phylogenetic analysis of MADS-box genes from O. sativa, A. thaliana, E. japonica, and T. cacao. Figure S13. Observation the fruit development. Figure S14. Animal seed dispersal. Figure S15. Anthocyanin biosynthesis in E. japonica fruits. Figure S16. Carotenoid accumulation and the chlorophyll degradation in E. japonica fruits. Figure S17. Expression profile of fruit dehiscence-related genes. Figure S18. Phylogenetic tree of DELLA genes obtained from six malvids species. Figure S19. Phylogenetic tree of CAD genes obtained from seven malvids species. Figure S20. Expression pattern of fruit abscission-related genes. Figure S21. Structure of pentacyclic triterpene compounds separated from Euscaphis. Figure S22. Phylogenetic tree of HMGR gene in plants. Figure S23. Phylogenetic tree of P450s gene family obtained from A. thaliana and E. japonica.SUPPLEMENTARY MATERIAL 2: Table S1. Assembled statistics of E. japonica genome. Table S2. Evaluation of E. japonica genome assembly. Table S3. Chromosome length of E. japonica. Table S4. Prediction of gene structures of the E. japonica genome. Table S5. Statistics on the function annotation of the E. japonica genome. Table S6. Non-coding RNA annotation results of E. japonica genome. Table S7. BUSCO assessment of the E. japonica annotated genome. Table S8. Statistic of repeat sequence in E. japonica genome. Table S9. Gene-clustering statistics for 17 species. Table S10. KEGG enrichment result of unique genes families of E. japonica. Table S11. Gene Ontology (GO) and KEGG enrichment result of significant shared by malvids species gene families. Table S12. Gene Ontology (GO) and KEGG enrichment result of significant expansion of E. japonica gene families. Table S13. Gene Ontology (GO) enrichment result of significant contraction of E. japonica gene families. Table S14. Statistical sampling population information. Table S15. Statistics population resequencing information. Table S16. Statistical nucleotide polymorphisms in the populations. Table S17. Candidate positive selection genes (PSGs) in the evergreen population. Table S18. Candidate positive selection genes (PSGs) in the deciduous population. Table S19. Gene Ontology (GO) enrichment result of significant PSGs in the evergreen population. Table S20. List of MADS-box genes identified in E. japonica. Table S21. Genes involved in anthocyanin biosynthesis, carotenoid biosynthesis, and chlorophyll degradation. Table S22. Identification fruit dehiscence-related genes in E. japonica. Table S23. Genes related to lignin synthesis that are highly expressed during pericarp dehiscence. Table S24. Gene expression levels (FPKMs) of fruit abscission-related genes in pericarp. Table S25. Triterpene compounds separated from Euscaphis. Table S26. Number of putative pentacyclic triterpene-related genes in the malvids species. Table S27. Identified pentacyclic triterpene synthesis-related genes in E. japonica genome. Table S28. Statistical simple sequence repeat.Fund for Excellent Doctoral Dissertation of Fujian Agriculture and Forestry University, China; Fujian Provincial Department of Science E. japonica Evolution and Selection of Ornamental Medicinal Resources, China; the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China; the Collection, Development and Utilization of Eascaphis konlshli Germplasm Resources; the European Research Council (ERC) under the European Unionā€™s Horizon 2020 research and innovation program and from Ghent University.https://onlinelibrary.wiley.com/journal/1365313xam2022BiochemistryGeneticsMicrobiology and Plant Patholog
    • ā€¦
    corecore