109 research outputs found

    Efficient Removal of Methyl Orange and Alizarin Red S from pH-Unregulated Aqueous Solution by the Catechol–Amine Resin Composite Using Hydrocellulose as Precursor

    No full text
    We report a novel composite absorbent prepared by the simple method that catechol-amine resin coats the hydrocellulose based on the adhesion property like polydopamine. The composite which contains many chelating groups on its surface was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc. The obtained adsorbents were investigated to remove Methyl Orange (MO) and Alizarin Red S (AR) from pH-unregulated aqueous system by batch experiments, including the affected factors of adsorbent dosage, contact time, initial concentration, and temperature. Results showed the adsorption processes belonged to the chemisorption and exhibited a spontaneous and endothermic nature. Besides, the removal performances fitted with the Langmuir isotherm model and pseudo-second order kinetic model very well. The maximum adsorption amounts of MO and AR were 189.39 and 284.09 mg/g at 303 K, respectively. The difference about adsorption amounts may be caused by the strong effect of π–π conjugation and hydrogen bonding between adsorbent and AR. Furthermore, the adsorption processes exhibited a spontaneous and endothermic nature. The recycling test indicated that the adsorbent stayed stable for the removal of both dyes by desorbed three times. Accordingly, the adsorbent with high adsorption capacity and rapid removal rate should be a promising material for the removal of anionic dyes from sewage

    Self-Healing Surface Hydrophobicity by Consecutive Release of Hydrophobic Molecules from Mesoporous Silica

    No full text
    The paper reports a novel approach to achieve self-healing surface hydrophobicity. Mesoporous silica is used as the reservoir for hydrophobic molecules, i.e., octadecylamine (ODA), that can release and refresh the surface hydrophobicity consecutively. A polymdopamine layer is used to further encapsulate silica–ODA, providing a reactive layer, governing release of the underlying ODA, and improving the dispersivity of silica nanoparticles in bulk resin. The approach arrives at self-healing (super)­hydrophobicity without using any fluoro-containing compounds

    Facile Preparation of Tannic Acid–Poly(vinyl alcohol)/Sodium Alginate Hydrogel Beads for Methylene Blue Removal from Simulated Solution

    No full text
    A novel hydrogel bead [tannic acid (TA)–poly­(vinyl alcohol) (PVA)/sodium alginate (SA)] with high strength prepared by biocompatible PVA, TA, and biocompatible SA via an instantaneous gelation method was applied to remove methylene blue (MB) from aqueous solution. The obtained TA–PVA/SA hydrogel beads were fully characterized by thermogravimetric analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and so on. The adsorption performances of TA–PVA/SA hydrogel beads for MB were investigated by changing the factors of TA content, initial concentration, pH, adsorbent dosage, contact time, and temperature systematically. The maximum capacity of TA–PVA/SA hydrogel beads for MB removal was obtained to be 147.06 mg/g at 30 °C, whose capability was better than that without TA. After fitting the adsorbed data, it was basically consistent with the Langmuir isotherm and pseudo-second-order kinetic model. Thermodynamic studies indicated that MB removal was spontaneous and exothermic in nature. It is concluded that the low-cost TA–PVA/SA hydrogel beads as an easily recoverable adsorbent have a great potential on the removal of hazardous dyes from wastewater

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    No full text
    International audienceThe radiative decays χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb−1^{-1}. Using the~B+→χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)→ψ(2S)ÎłÎ“Ï‡c1(3872)→J/ÏˆÎł=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ∗0+Dˉ0D∗0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state

    Amplitude analysis of B+→ψ(2S)K+π+π−B^+ \to \psi(2S) K^+ \pi^+ \pi^- decays

    No full text
    International audienceThe first full amplitude analysis of B+→ψ(2S)K+π+π−B^+ \to \psi(2S) K^+ \pi^+ \pi^- decays is performed using proton-proton collision data corresponding to an integrated luminosity of 9 fb−19\,\text{fb}^{-1} recorded with the LHCb detector. The rich K+π+π−K^+ \pi^+ \pi^- spectrum is studied and the branching fractions of the resonant substructure associated with the prominent K1(1270)+K_1(1270)^+ contribution are measured. The data cannot be described by conventional strange and charmonium resonances only. An amplitude model with 53 components is developed comprising 11 hidden-charm exotic hadrons. New production mechanisms for charged charmonium-like states are observed. Significant resonant activity with spin-parity JP=1+J^P = 1^+ in the ψ(2S)π+\psi(2S) \pi^+ system is confirmed and a multi-pole structure is demonstrated. The spectral decomposition of the ψ(2S)π+π−\psi(2S) \pi^+ \pi^- invariant-mass structure, dominated by X0→ψ(2S)ρ(770)0X^0 \to \psi(2S) \rho(770)^0 decays, broadly resembles the J/ψϕJ/\psi \phi spectrum observed in B+→J/ψϕK+B^+ \to J/\psi \phi K^+ decays. Exotic ψ(2S)K+π−\psi(2S) K^+ \pi^- resonances are observed for the first time

    Probing the nature of the χc1(3872)\chi_{c1}(3872) state using radiative decays

    No full text
    International audienceThe radiative decays χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow\psi(2S)\gamma and χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma are used to probe the~nature of the~χc1(3872)\chi_{c1}(3872) state using proton-proton collision data collected with the LHCb detector, corresponding to an~integrated luminosity of~9fb−1^{-1}. Using the~B+→χc1(3872)K+B^+\rightarrow \chi_{c1}(3872)K^+decay, the χc1(3872)→ψ(2S)Îł\chi_{c1}(3872)\rightarrow \psi(2S)\gamma process is observed for the first time and the ratio of its partial width to that of the χc1(3872)→J/ÏˆÎł\chi_{c1}(3872)\rightarrow J/\psi\gamma decay is measured to be Γχc1(3872)→ψ(2S)ÎłÎ“Ï‡c1(3872)→J/ÏˆÎł=1.67±0.21±0.12±0.04, \frac{\Gamma_{\chi_{c1}(3872)\rightarrow \psi(2S)\gamma}} {\Gamma_{\chi_{c1}(3872)\rightarrow J/\psi\gamma}} = 1.67 \pm 0.21 \pm 0.12 \pm0.04 , where the first uncertainty is statistical, the second systematic and the third is due to the uncertainties on the branching fractions of the ψ(2S)\psi(2S) and J/ψJ/\psi mesons. The measured ratio makes the interpretation of the χc1(3872)\chi_{c1}(3872) state as a~pure D0Dˉ∗0+Dˉ0D∗0D^0\bar{D}^{*0}+\bar{D}^0D^{*0} molecule questionable and strongly indicates a sizeable compact charmonium or tetraquark component within the χc1(3872)\chi_{c1}(3872) state
    • 

    corecore