126 research outputs found

    Symmetrical Bipolar Output Isolated Four-Port Converters Based on Center-Tapped Winding for Bipolar DC Bus Applications

    Get PDF

    Small Signal Modeling and Design Analysis for Boost Converter with Valley V2 Control

    Get PDF

    Growth of millimeter-sized high-quality CuFeSe2_2 single crystals by the molten salt method and study of their semiconducting behavior

    Full text link
    An eutectic AlCl3_3/KCl molten salt method in a horizontal configuration was employed to grow millimeter-sized and composition homogeneous CuFeSe2_2 single crystals due to the continuous growth process in a temperature gradient induced solution convection. The typical as-grown CuFeSe2_2 single crystals in cubic forms are nearly 1.6×\times1.2×\times1.0 mm3 in size. The chemical composition and homogeneity of the crystals was examined by both inductively coupled plasma atomic emission spectroscopy and energy dispersive spectrometer with Cu:Fe:Se = 0.96:1.00:1.99 consistent with the stoichiometric composition of CuFeSe2_2. The magnetic measurements suggest a ferrimagnetic or weak ferromagnetic transition below TC_C = 146 K and the resistivity reveals a semiconducting behavior and an abrupt increase below TC_C

    Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems

    Get PDF
    A recently reported incident of severe pulmonary fibrosis caused by inhaled polymer nanoparticles in seven female workers obtained much attention. In addition to the release of ENM waste from industrial sites, a major release of ENMs to environmental water occurs due to home and personal use of appliances, cosmetics, and personal products, such as shampoo and sunscreen. Airborne and aqueous ENMs pose immediate danger to the human respiratory and gastrointestinal systems. ENMs may enter other human organs after they are absorbed into the bloodstream through the gastrointestinal and respiratory systems. Practically, a thorough understanding of the fundamental chemical interactions between nanoparticles and biological systems has two direct impacts. First, this knowledge will encourage and assist experimental approaches to chemically modify nanoparticle surfaces for various industrial or medicinal applications

    Effect of Steam Explosion on the Aroma Characteristics of Tea Produced from Tender and Mature Leaves of Eucommia ulmoides Analyzed Using Electronic Nose and Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry

    Get PDF
    In order to investigate the differences in volatile components and major aroma characteristics between tea made from tender and mature leaves of Eucommia ulmoides pre-treated by steam explosion (SE), an electronic nose (E-nose) and headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) were applied to analyze the effect of SE on the volatile components in tea made from tender and mature leaves of the Eucommia ulmoides cultivar ‘Huazhong 8’. The results showed that the principal component analysis (PCA) and linear discriminant analysis (LDA) models fitted well the E-nose data, which suggested that the aroma characteristics of both tender and mature leaf tea were significantly different between with and without SE pretreatment. Altogether, 177 volatile components were identified by HS-SPME-GC-MS, among which 24 were selected as aroma active substances by orthogonal partial least squares discriminant analysis (variable importance in the projection (VIP) value ≥ 1) and Kruskal-Wallis H test (P < 0.05). The key aroma substance of tender leaf tea without SE was dihydroactinidiolide. The key aroma substances of tender leaf tea with SE were dihydroactinidiolide, nonanal, benzaldehyde and phenylacetaldehyde, contributing to citrus-like, flowery, caramelic, bitter almond-like, nutty, rose-like and chocolate-like aromas. No key aroma substances were found in mature leaf tea without SE, while dihydroactinidiolide and nonanal were identified the key aroma substances in mature leaf tea with SE, contributing to sweet peach-like, woody, citrus-like, flowery and caramelic aromas. The results of this study can provide a reference for the development of beverage products based on Eucommia ulmoides leaves

    A New Type of Quartz Smog Chamber : Design and Characterization

    Get PDF
    Publisher Copyright: ©Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m(3)), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 +/- 1 degrees C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10(-4) min(-1) at 298 K under dry conditions. It is 0.08 h(-1) for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (J(NO2)) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min(-1). The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and alpha-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O-3 formation in the atmosphere.Peer reviewe

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    Exploring the Immunotoxicity of Carbon Nanotubes

    Get PDF
    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation
    • …
    corecore