CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
A New Type of Quartz Smog Chamber : Design and Characterization
Authors
Tianzeng Chen
Biwu Chu
+16 more
Zemin Feng
Yishuo Guo
Hong He
Chenjie Hua
Markku Kulmala
Chunshan Liu
Yongchun Liu
Li Ma
Qingxin Ma
Wei Ma
Yujing Mu
Chao Yan
Junlei Zhan
Ying Zhang
Yusheng Zhang
Wenshuo Zhou
Publication date
15 February 2022
Publisher
Doi
Cite
Abstract
Publisher Copyright: ©Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. However, most of them are made of Teflon films, which have relatively high background contaminations due to the wall effect. We developed the world's first medium-size quartz chamber (10 m(3)), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-steel frame. Characterizations show that this chamber exhibits excellent performance in terms of relative humidity (RH) (2-80%) and temperature (15-30 +/- 1 degrees C) control, mixing efficiency of the reactants (6-8 min), light transmittance (>90% above 290 nm), and wall loss of pollutants. The wall loss rates of the gas-phase pollutants are on the order of 10(-4) min(-1) at 298 K under dry conditions. It is 0.08 h(-1) for 100-500 nm particles, significantly lower than those of Teflon chambers. The photolysis rate of NO2 (J(NO2)) is automatically adjustable to simulate the diurnal variation of solar irradiation from 0 to 0.40 min(-1). The inner surface of the chamber can be repeatedly washed with deionized water, resulting in low background contaminations. Both experiments (toluene-NOx and alpha-pinene-ozone systems) and box model demonstrate that this new quartz chamber can provide high-quality data for investigating SOA and O-3 formation in the atmosphere.Peer reviewe
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Helsingin yliopiston digitaalinen arkisto
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:helda.helsinki.fi:10138/34...
Last time updated on 17/05/2022