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Abstract:  21 

Since the 1960s, many indoor and outdoor smog chambers have been developed worldwide. 22 

However, most of them are made of Teflon films, which have relatively high background 23 

contaminations due to wall effect. We developed the world’s first medium-size quartz chamber 24 

(10 m3), which is jointed with 32 pieces of 5 mm thick polished quartz glasses and a stainless-25 

steel frame. Characterizations show that this chamber exhibits excellent performance in terms 26 

of relative humidity (RH) (2-80%) and temperature (15-30 ± 1 ℃) control, mixing efficiency 27 

of reactants (6-8 min), light transmittance (>90% above 290 nm) and wall loss of pollutants. 28 

The wall loss rates of gas-phase pollutants are on the order of 10−4 min−1 at 298K under dry 29 

conditions. It is 0.08 h−1 for 100-500 nm particles, significantly lower than those of Teflon 30 

chambers. The photolysis rate of NO2 (JNO2) is automatically adjustable to simulate the diurnal 31 

variation of solar irradiation from 0 to 0.40 min−1. The inner surface of the chamber can be 32 

repeatedly washed with deionized water, resulting into low background contaminations. Both 33 

experiments (toluene-NOx and α-pinene-ozone systems) and box model demonstrate that this 34 

new quartz chamber can provide high-quality data for investigating SOA and O3 formation in 35 

the atmosphere. 36 

Keywords: Quartz Chamber, Characterization, SOA and O3 formation 37 

Synopsis: A water-washable quartz chamber with low particle loss rate was constructed for 38 

simulating atmospheric chemistry under clean conditions.  39 
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1.Introduction 40 

Air pollution is both local and global environmental issues. Many smog chambers have 41 

been developed worldwide for understanding the mechanisms of air pollution events, such as 42 

photochemical smog and secondary organic aerosol (SOA) formation under well-controlled 43 

conditions. The smog chambers are usually divided into outdoor and indoor chambers in terms 44 

of light sources. The former one uses the natural sunlight, while the latter one usually uses 45 

artificial lights.1 Many experiments on ozone (O3) and SOA formation have been carried out in 46 

large outdoor chambers.2-7 However, it is a challenge to repeat experiments with the same 47 

diurnal variations of solar irradiation and temperature. In contrast, it is easy to do that by 48 

precisely controlling reaction conditions (e.g., temperature, humidity, and pressure) using an 49 

indoor chamber although the artificial light spectrum of indoor chambers differs from the solar 50 

spectrum, resulting in different rates for some photolysis reactions.8-10 51 

Table S1 summarizes the worldwide outdoor and indoor chambers used to simulate the 52 

atmospheric photochemical processes. In the 1970s, the large-size smog chamber abroad was 53 

aimed to understand the formation of near-ground O3 pollution.11, 12 In the following thirty 54 

years, the indoor and outdoor chambers were widely used to study the general mechanism of 55 

secondary pollutants, such as ground-level-ozone13-15 and SOA.6, 16-19 After the 2000s, many 56 

smog chambers have been set up or transformed, rebuilt and upgraded, to deal with the issues 57 

of atmospheric chemistry, such as PM2.5 pollution,4, 20, 21 reaction kinetic parameters and 58 

mechanisms22, 23 of intermediate products from volatile organic compounds (VOCs) oxidation 59 

24-27 and multiphase processes,28, 29 and so on. In China, chamber studies have been started to 60 

investigate gas-phase kinetics in the atmosphere in the early 1980s.30-32 Tang et al. 33 built the 61 
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earliest indoor chamber in Peking University to disclose the photochemical smog phenomenon 62 

that occurred in Lanzhou, China. In the next decades, various-size of smog chambers were 63 

constructed to investigate a series of atmospheric issues, including the photochemical-reaction 64 

mechanism of O3 and aerosol formation,34-38 the primary emissions and secondary formation 65 

process of biomass,39 gasoline and diesel exhuasts,40-42 and physicochemical properties of 66 

SOA.43-46  67 

Complex atmospheric chemical mechanisms or models, such as the Master Chemical 68 

Mechanisms (MCM),47 the Regional Atmospheric Chemistry Mechanisms (RACM),48 the 69 

Carbon Bond mechanisms,49 and the SAPRC mechanisms,50 have been developed with the help 70 

of chamber studies.11 12 51 Nowadays, fine atmospheric chemical mechanisms, such as highly 71 

oxidized molecules (HOMs) formation,52 new particle formation (NPF) and gas-to-particle 72 

partitioning,53 and the reaction kinetics of important intermediates43, 54-58 have attracted much 73 

attention in chamber studies. In particular, it is feasible for studying the formation mechanism 74 

or kinetics of intermediates with extremely low concentrations with the aid of the state-of-the-75 

art instruments, such as high-resolution chemical ionization mass spectrometer (HR-CIMS), 76 

high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and so on. When 77 

dealing with these scientific issues, low background contamination is a new requirement for 78 

chamber studies. 79 

So far, the smog chambers were almost made of Teflon films, including fluorinated 80 

ethylene propylene (FEP), poly tetra fluoroethylene (PTFE) and perfluoroalkoxy (PFA) .53 The 81 

advantages of Teflon chambers include changeable shape to keep constant pressure during 82 

experiments and to be evacuated for speeding up chamber cleaning, chemical inertness for 83 
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some reactants and intermediate products, and easiness for construction.53, 59 However, the 84 

inner walls of a Teflon reactor are easily contaminated by depositing gas-phase and particle-85 

phase pollutants due to the electrostatic property of the Teflon film. Thus, the contamination 86 

between different experimental runs is an important problem for chamber studies. Subsequently, 87 

it requires a thorough cleaning after an experiment. Even so, Teflon reactor usually has a short 88 

lifetime, and a high cost for the film replacement. In addition, Teflon film is permeable for 89 

some trace gases and even a source of VOCs. This usually results in a relatively high 90 

background, which is a challenge for understanding the atmospheric processes under extremely 91 

clean conditions. This is one of the driven forces to construct the CLOUD chamber, CESAM 92 

60 (4.2 m3) and HIRAC61 (2 m3) with stainless-steel which is water-washable62 and the 93 

Simulation of Atmospheric Photochemistry In a large Reaction Chamber22 (SAPHIR) using 94 

double-layers of Teflon films. Quartz is a water-washable material with chemical inertness and 95 

high UV-light transparency. It is widely used as the material for flow tube reactors with volume 96 

usually from tens to hundreds of liters. Small size quartz chambers such as QUAREC63 (1.08 97 

m3) and CERNESIM64 (0.78 m3) have been reported. However, the large ratio of surface area 98 

to volume (S/V) of the flow tube reactors and small chambers limits its application in 99 

photochemistry studies under the concentration conditions close to that in the ambient air. In 100 

addition, the relatively small volume, leading to a short residence time, means that it is difficult 101 

to simulate reactions with long reaction time. To our best knowledge, a large smog chamber 102 

(V > 2 m3) made of quartz has not been reported yet63-65 due to manufacture and the cost.  103 

In this study, we described a 10 m3 quartz indoor photochemical chamber newly built in 104 

the Aerosol and Haze Laboratory at Beijing University of Chemical and Technology 105 
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(AHL/BUCT). As the world’s first medium-size quartz chamber at present, it can be cleaned 106 

with deionized water (Section 2.3) to minimize the contamination between two experiments. It 107 

also extends the life-cycle and greatly reduce the maintaining-costs compared with Teflon 108 

chambers. The AHL/BUCT chamber was designed to simulate the atmospheric photochemical 109 

processes under repeatable conditions (e.g., temperature, humidity, and light intensity). A series 110 

of experiments were performed to characterize the chamber, including homogeneity of 111 

reactants, irradiation intensity and light transmission, wall loss of gaseous and particle 112 

pollutants, and background of the chamber. In addition, the preliminary application 113 

experiments have been carried out using the classic gas-phase photochemical reaction of the 114 

toluene-NOx system and ozonolysis of α-pinene in the dark. 115 

2. Instrumentation 116 

The quartz chamber system is a laboratory simulation unit of the AHL/BUCT station, 117 

which is equipped with the state-of-the-art instruments in connection to atmospheric trace gases, 118 

aerosol particle size and mass concentrations, cluster and aerosol particle chemical composition 119 

on the levels from molecular size to micrometer size.66 The chamber system consists of five 120 

parts, i.e., a quartz reactor, an enclosure unit along with temperature and UV irradiation 121 

controlling system, a clean unit, a pollutants-supply unit and a detecting unit (Figure 1). The 122 

quartz reactor sets in the enclosure which is temperature-controllable and is also the support of 123 

UV lights. The whole chamber system is in a temperature-conditioned room. Figure S1 shows 124 

the pictures of the reactor and the enclosure.  125 



7 

 

 126 

Figure 1. Schematic diagram of the AHL/BUCT quartz chamber (TCE: temperature-controlled 127 

enclosure; TCF: temperature-controlled fans; MF: magnetic fans; PS: pressure sensor; HS: 128 

humidity sensor). 129 

Briefly, the quartz reactor is a 10 m3 cuboid reactor, which consists of 32 pieces of polished 130 

quartz glasses (5 mm of thickness), a stainless-steel flange (30 × 100 mm) with a quartz window 131 

(165 mm I.D.) and a stainless-steel frame (2.5 × 2 × 2 m, L, W and H). Several inlets, sampling 132 

lines and a temperature and humidity sensor (HMP110, Vaisala, Finland) and a pressure sensor 133 

(MSW101, Dwyer, America) are installed inside the reactor. A cuboid enclosure (3.2 × 2.7 × 134 

2.7 m) is temperature-conditioned through a circulation system. 60 UV lamps (1.2 m, 60 W 135 

Philips/10R PL, Germany) with the main wavelength at 371 nm are mounted on the inner wall 136 

of the enclosure. The reactor can be cleaned by both deionized water and zero-air. Water spray 137 

is introduced through the aforementioned flange with a high-pressure water gun, while the 138 
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zero-air system is the same as the that of traditional Teflon chambers. A pollutant supply unit 139 

and a detecting unit are similar to those used in the traditional chambers and described in the 140 

SI.  141 

3. Characterization of the chamber 142 

A series of experiments have been carried out to evaluate the performance of the quartz 143 

chamber, including the homogeneity of reactants, the light spectrum and irradiation intensity, 144 

the wall losses of gaseous pollutants and particles. All experiments are carried out at the RH 145 

lower than 10%. Only a part of instruments such as a Vocus proton transfer reaction mass 146 

spectrometry (Vocus-PTR-MS), a single photon ionization (SPI) TOF-MS (SPIMS), inorganic 147 

trace-gas analyzer, and a scanning mobility particle sizer (SMPS) are involved in these 148 

experiments. 149 

3.1. Basic parameters 150 

The temperature in the BUCT quartz chamber is accurately controlled in the range of 15-151 

30 ℃ by a circulation system. The temperature in the chamber is monitored by a temperature 152 

sensor. Two fans inside the chamber ensures the homogeneity of the temperature in the reactor. 153 

Figure S2 shows the evolution of the temperature inside the chamber in the dark and in the 154 

light. The temperature of the chamber reaches a target value within 30 minutes. The fluctuation 155 

of temperature is below ±1 ℃ in the dark and below ±2 ℃ when all lights are turned on. The 156 

pressure in quartz reactor can be accurately controlled in whole experiment (Figure S3). These 157 

results indicate a good performance of temperature control inside the chamber. 158 

NOx is chosen as a tracer to test the mixing time for gas-phase pollutants inside the 159 

chamber. The inlet for gas-feeding is in the middle of the chamber. The NOx was injected into 160 
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the chamber at a flow rate of 2 L min-1 for 3 min in each pulse from a standard gas cylinder. 161 

Before the NOx is added, the fans are turned on. Figure S4 shows the change of NOx 162 

concentration, which is continuously monitored using a NOx analyzer. The NOx concentration 163 

becomes stable within 6-8 min after the injection. For other compounds, like toluene, a similar 164 

mixing time is observed. Compared to the duration of each chamber experiment, which may 165 

be several hours, this mixing time is acceptable.  166 

3.2. Light spectrum and intensity 167 

The emission spectrum of the UV lamps is measured using a spectrometer (StellarNet, 168 

Inc., USA) and is shown in Figure S5. The irradiation is in the range of 340-600 nm with the 169 

strongest peak at 371 nm, slightly higher than other indoor chambers (353-370 nm)41, 67, 68. 170 

Several small peaks at 300-600 nm are also observable like other UV lamps used in indoor 171 

chambers 9, 35, 69. The emission wavelength can well represent the sunlight (the light-yellow 172 

filled area) in the low wavelength region. Figure S5 also shows the transmittance of the quartz 173 

with 5 mm of depth (the light blue line) measured using the UV-visible spectrophotometer 174 

(INESA Instrument., China). The transmittance is over 90% in the wavelength range of 290-175 

1100 nm. We also measured the transmittance of FEP Teflon film with 125 m depth (Du Pont). 176 

The transmittance decreases from around 90 % at 1100 nm to 65 % at 300 nm. At 371 nm, the 177 

transmittance of the quartz and the FEP film are 91.5 % and 74.5 %, respectively. These results 178 

indicate that quartz is better than FEP and is an ideal material for the smog chamber reactor as 179 

far as the light transmittance is considered. The distribution of light intensity in the chamber is 180 

relatively uniform (Figure S6).  181 

In chamber studies, the light intensity is usually represented by the photolysis rate of NO2 182 
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(JNO2), which is estimated according to a steady state of the photochemical reaction system of 183 

NO-NO2-O3. NO2 is injected into the chamber, irradiated with the UV lights. According to the 184 

monitored mixing ratio of NO, NO2, and O3, JNO2 is calculated using the flowing equation,70 185 

𝐽𝑁𝑂2
= 𝑘𝑁𝑂+𝑂3

[𝑁𝑂][𝑂3]/[𝑁𝑂2] (1) 186 

where [NO], [NO2], and [O3] are the equilibrium concentrations (molecules cm-3) of NO, NO2 187 

and O3, respectively; kNO+O3 represents the second-order rate constant between ozone and NO 188 

reaction (1.73×10-14 cm3 molecule-1 s -1 at 298 K 70). The re-equilibrium reactions among NO, 189 

NO2 and O3 in the sampling lines will have an influence on the measurement of their 190 

concentrations in the reactor. In this work, the JNO2 is calculated using a MATLAB code which 191 

accounting for the re-equilibrium in the sample lines. 192 

The JNO2 is 0.40±0.01 min-1 when all the UV lights are turned on (full stars in Figure 2B). 193 

It decreases to 0.20±0.01 min-1 when a half of UV lights are turned off (open stars in Figure 194 

2B). This shows a good linearity for the UV lights. The maximal JNO2 of our chamber is slightly 195 

lower than that of GIG-CAS chamber35 (0.49 min-1), while is in the range of these reported 196 

values 0.12~0.55 min-1 in other studies40, 71. The hourly mean ambient JNO2 (the pink line) 197 

varies from 0.005 to 0.41 min-1 (Figure 2A). Figure 2B shows the mean diurnal curve of JNO2 198 

measured at BUCT using a photolysis rate spectrometer (2pi-jNO2-Filter Radiomer, Metcon, 199 

Germany). The maximal JNO2 of our chamber is comparable with the ambient values at noon 200 

in summer (0.41 min-1), while the JNO2 with a half of UV lights is close to the ambient value at 201 

noon in winter (0.20-0.25 min-1). The calculated JO1D72 with all light on is about 0.75×10-4 202 

min-1, which is comparable with the ambient values (1.2~3×10-4 min-1, based on the measured 203 

spectrum) at noon in winter of Beijing, but lower than that (6~1.8×10-4 min-1) in summer 204 
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Beijing. In addition, the lamps can be automatically controlled with a program. As shown in 205 

Figure 2B (the blue dots and lines), the light system can well simulate the diurnal curve of 206 

ambient JNO2 based on the linear correlation of JNO2 and lamp number. This indicates that the 207 

BUCT chamber can simulate the photochemistry in a day and in different seasons in Beijing. 208 

 209 

Figure 2. Comparison of JNO2 between BUCT chamber and ambient data (The full star means 210 

the JNO2 when all lights are turned on and the hollow star means that when a half lights are 211 

turned on, the purple lines and filled area denote the ambient JNO2 measured at BUCT). 212 

3.3. Wall loss of typical gas species and particles 213 

Wall loss rate is a key parameter in chamber studies. The wall loss rates of NO, NO2 and 214 

O3, which has been widely reported in literatures, were investigated by injecting a certain 215 

concentration of the corresponding gas and presented in their first-order decay rates in the dark. 216 

Table S3 shows the wall loss rates of O3, NO and NO2 in our chamber. They were 217 
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6.76~8.90×10−4, 4.50~4.58×10−4, and 2.16~3.54×10−4 min−1, respectively. Compared with 218 

other chambers reported in the literatures,5, 25, 35, 41, 73 the wall loss rates of these gas species in 219 

our chamber are higher than others (see Table S3) because our chamber has a larger ratio of 220 

surface-to-volume area (S/V=2.6 m-1). The wall loss rate of toluene ((0.11-0.46) ×10−4 min-1) 221 

in our chamber is one order of magnitude smaller than the value ((2.20±0.39)×10−4 min-1) in 222 

RCEES chamber 74. This shows the different adsorptive properties for the quartz and stainless-223 

steel frame compared with Teflon films. In addition, the wall loss rates of intermediates range 224 

from 10-5 to 10-4 min-1 (Table S4), which means they are acceptable during the typical 6-hour 225 

photochemical experiments.  226 

Particles can deposit to the reactor walls due to turbulence, Brownian diffusion, 227 

gravitational settling, and electrostatic deposition. The wall losses of particles are usually 228 

treated as a first-order process. Thus, the loss rate, kdep, is expressed as the following equation, 229 

𝑑𝑁(𝑑𝑝,𝑡)

𝑑𝑡
= −𝑘𝑑𝑒𝑝(𝑑𝑝)𝑁(𝑑𝑝, 𝑡) (2) 230 

where N(dp,t) is the particle number concentration at a certain particle diameter (dp).75 231 

Ammonium sulfate ((NH4)2SO4) seed particles were used as the reference aerosol to measure 232 

the particle wall losses. About 0.05 mol L-1 of (NH4)2SO4 solution was atomized with a flow 233 

rate of 2 L min-1 zero air. Then, it was dried through a diffusion dryer filled with silica gels to 234 

remove the water before introducing into the reactor. The total number concentration of 235 

(NH4)2SO4 was in the range of 2000~3000 molecule cm-3 to reduce the coagulation of particles 236 

in the chamber. For a cuboid chamber, the dependence of the wall loss rate on particle diameter 237 

can be described according to equation (3),8 238 

𝑘𝑑𝑒𝑝 = 𝑎 × 𝑑𝑝
𝑏 + 𝑐 × 𝑑𝑝

𝑑 (3) 239 



13 

 

where the parameters (a, b, c, and d) are 2.6610-6, 1.76, 15.23 and -1.36, respectively. These 240 

parameters are comparable with literature data.5, 76 Figure S7 shows wall loss rate of (NH4)2SO4 241 

particles as a function of particle diameter. The kdep is in the range of 0.02~0.24 h-1. For particles 242 

with dp less than 100 nm, the loss rates decrease with the dp increasing. When the dp is greater 243 

than 100 nm, it increases as the dp increasing. Diffusion deposition greatly contributes to the 244 

wall loss of small particles when the particle diameter is less than 50 nm, while gravitational 245 

settling leads to quick deposition of large particles. This is similar to these previous studies.5
 40 246 

Table S5 compares the overall kdep (100-500 nm）among different chambers. It is 0.08 h-1 in 247 

our chamber, and this corresponds to a lifetime of 12.5 h. Although the volume of our chamber 248 

is smaller than other FEP Teflon chambers, the kdep value of our chamber is lower than other 249 

chambers (0.12-0.40 h-1), while it is lightly higher than the glass coated stainless steel (0.028 250 

h-1) 77 and CESAM stainless steel chamber (0.01 h-1) 60. This should be mainly because of the 251 

different materials of the reactors. For our chamber, the stainless-steel frames are electrostatics-252 

proof material. In addition, the specific resistivity of quartz is 5×1016-7.5×1017  m78, while it 253 

is >1×1018  m for Teflon film79. This implies a slight weaker dielectric potential of quartz than 254 

FEP Teflon. 255 

3.4. Quartz reactor cleanliness 256 

Long-term experiments will result in inorganic and organic contaminants depositing on 257 

the inner wall of the smog chamber. Thus, it is important to minimize the contamination 258 

between two experimental runs. The chamber was progressively cleaned by two methods:1) 259 

cleaning cycles involving zero air in the presence of UV light; 2) continuously flushing with 260 

deionized water. 261 



14 

 

In the chamber testing period, aerosol bursts characterized by large peak concentrations 262 

(>10000 cm−3) usually occurred among 6-weeks experimental runs. After every experiment, 263 

the air flow rate was maintained at 40 L min-1, which means the chamber was flushed with 6 264 

times of the chamber volumes zero air per day. After that, the particle mass concentration was 265 

less than 0.01 μg m-3. However, contaminants, from deposited organic vapors and particles, are 266 

a potential source of backgrounds which may participant in the photochemistry, and aerosol 267 

nucleation and growth. To evaluate the performance for the water-cleaning system, we washed 268 

the chamber with deionized water. Figure S8 shows the mass spectra of H3O
+ charged ions 269 

within m/z 12~300 Th before and after flushing the inner walls of the quartz reactor with 270 

deionized water. The signals are obviously decreased after water flushing experiment compared 271 

with that before. Figure 3 further shows the variation of SOA mass concentrations in 272 

background experiments with UV lights on before and after water-flushing. In a flow 273 

experiment mode (30 L min-1 of zero air flow, the light-pink highlighted area), no NPF event 274 

was observable neither before nor after water-flushing. However, in a batch mode (0 L min-1 275 

of zero air flow, the light-green highlighted area), NPF event happened before water-flushing 276 

and the SOA mass concentration is up to 0.5 μg m3 for 6h of UV irradiation. After water-277 

flushing, the SOA concentration increased slightly in the first three hour, and the mass 278 

concentration was around 0.05 μg m3. These results indicate that flushing with deionized water 279 

can effectively remove not only inorganic substances, but also water-soluble organics to get 280 

the lower background contamination. 281 
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 282 

Figure 3. The variation of SOA mass concentration in the presence of UV light before and after 283 

water-flushing (the zero-air flow rate of 30 L min-1
 in the light-pink filled area and 0 L min-1 in 284 

the light-green filled area, respectively) 285 

 286 

4. Applications of the chamber in O3 and SOA formation studies 287 

4.1. Photochemical oxidation of toluene-NOx system 288 

The toluene-NOx photochemical experiments were carried out to evaluate the 289 

performance of our chamber for chemical mechanism study, which has been intensively studied 290 

in other chambers.8, 80 Four experiments have been carried out under dry conditions at 298±1 291 

K. Table S6 summaries the initial experimental conditions. The initial toluene concentration 292 

varied from 155 to 250 ppb, and the initial toluene/NOx ratios (ppbC/ppb) ranged from 4.5 to 293 
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12.6. A slight over pressure was kept to prevent the ingress of air outside the chamber during 294 

our experiments. 295 

Figure S9 shows typical profiles of different pollutants under irradiating condition. The 296 

variations of all the pollutants are the same as the classical photochemistry of VOCs-NO system. 297 

In this experiment, the initial concentration of toluene and NOx is 155 ppb and 86.7 ppb, 298 

respectively. The decay of toluene and NO and the formation of O3 speeds up after ∼40 min, 299 

suggesting that HONO is consumed and OH radicals (Figure S10) are vigorously generated 300 

through recycling via NOx/HOx chemistry. However, an obvious time lag (~1 h) of aerosol 301 

growth is observed in Figure S9B because of the induction duration of low volatile organic 302 

compounds (LVOCs). This is also as the same as that observed in other studies. 81  303 

A near-explicit mechanism of the toluene from Master Chemical Mechanism (MCM) 304 

version 3.3.1 is applied to simulate the toluene-NO photochemistry using the Framework for 305 

0-D Atmospheric Modeling (F0AM).82 The description of F0AM in details can be seen in 306 

supporting material (S2). In the model, the wall loss rates of NO, NO2, and O3 obtained in 307 

section 3.3 have been accounted for. The formation of HONO from heterogenous reactions of 308 

NO2 on the wall surfaces has also been incorporated. Figure 4 shows the observed and 309 

simulated concentration profiles of toluene, NO, NO2 and O3. The modelled concentrations of 310 

toluene, NO, NO2, and O3 are generally well in agreement with the corresponding observed 311 

values. At the end of the experiment, toluene and O3 is slightly overpredicted with a relative 312 

deviation of 6.7 % and 7.4 %, respectively, while NO2 is slightly underpredicted about 6.2 %.  313 

The quantity ∆([O3]-[NO]) is widely used to evaluate the model performance,9, 83 which 314 

is defined as, 315 
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∆([O3] − [NO]) = ([𝑂3]𝑓𝑖𝑛𝑎𝑙 − 𝑁𝑂𝑓𝑖𝑛𝑎𝑙) − ([𝑂3]0 − [𝑁𝑂]0) (4) 316 

where NO0 and [O3]0 are the initial concentrations of NO and O3, while NOfinal and [O3]final are 317 

those at the end of experiment. ∆([O3]-[NO]) represents the amounts of NO oxidized and O3 318 

formed in the experiments, and gives an indication of the biases in simulation O3 formation. 319 

Based on the four independent experiments, the bias varies from -21.2 to 22.9 %, which is 320 

within the values ±25 % reported by Carter et al (2005) 9 and Wang et al (2014) 35 for VOC-321 

NOx systems. Therefore, these results indicate that the AHL/BUCT chamber is suitable for 322 

photochemical mechanism evaluations. 323 

 324 

Figure 4. Concentration-time profiles of observed and simulated (A) ozone, (B) toluene, (C) 325 

NO, and (D) NO2 in the toluene-NOx experiment. 326 

In addition, the SOA formation was studied in the toluene-NOx irradiation system. The 327 

aerosol yield, Y, is defined as the fraction of the reacted organic gas (ROG) according to the 328 
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following equation,18 329 

𝑌 =
∆𝑀𝑂

∆𝑅𝑂𝐺
 (5) 330 

where ∆MO is the total mass concentration of organic aerosol formed from photochemical 331 

reactions and ∆𝑅𝑂𝐺 is the consumed mass concentration of VOCs. Assuming aerosol density 332 

of 1.45 g cm-3, which is equal to 1.45 g cm-3 for toluene-SOA reported by Ng et al (2007),80 we 333 

convert the measured volume concentrations of SOA using a SMPS into mass concentrations 334 

after the wall losses of particles have been accounted for. Figure S11 compares the SOA yields 335 

of this work with previous studies. The measured SOA yields of the toluene-NO system are in 336 

the range of 0.016 to 0.097, which are comparable with the yields of 0.039 to 0.127 reported 337 

by Odum et al(1997),18 Takekawa et al (2003),8 Ng et al (2007),80 and Chu et al (2012).84 338 

According to partition model, Y is nonlinearly correlated to the mass concentration of 339 

organic aerosols (MO), 340 

𝑌 = 𝑀𝑂 ∑
𝛼𝑖𝐾𝑜𝑚,𝑖 

1+𝐾𝑜𝑚,𝑖𝑀𝑂
 (6) 341 

Where αi and Kom,i are the mass-based stoichiometric coefficient and partitioning coefficient of 342 

the species i, respectively; MO is the total mass concentration of organic aerosols. Odum et al 343 

(1996)18 found that a two-product model can well fit the SOA yield in chamber studies. The α1, 344 

α2, Kom,1 and Kom,2 is 0.1240, 0.06623, 0.04255, and 0.006476, respectively. Table S7 345 

summaries these four parameters reported in literatures. The α1, Kom,1 and Kom,2 fall in the same 346 

range, and α2 is slightly smaller than other studies indicating that the production of more low-347 

volatility products due to the lower wall loss rate. 81 348 

4.2. Ozonolysis of α-pinene  349 

Ozonolysis of α-pinene was further carried out in the dark to evaluate the flexibility of the 350 
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chamber in dark chemistry studies. This reaction has been widely studied and numerous data 351 

are available in the literature.16, 19, 35, 75, 85 The experimental conditions are listed in the Table 352 

S8. The initial concentration of α-pinene varied from 44 to 92 ppb. The aerosol density was 353 

assumed to be 1.3 g cm-3 when converting the volume concentration into the mass 354 

concentration. This is equal to that of 1.3 g cm-3 used by Bahreini et al (2005)86 or Alfarra et al 355 

(2006), 87 but higher than that of 1.0 g cm-3 reported by Wang et al (2014)35 or Li et al (2021)5 356 

for α-pinene SOA.  357 

Figure 5 compares the yields of this work and previous studies under the similar 358 

conditions, i.e., experiments under dry condition, seed-free, and in the absence of OH 359 

scavengers. The SOA yields in this work are from 0.11 to 0.32, which are in the range 360 

(0.09~0.33) reported in previous studies.19, 35, 85 The yield curve can be well fitted according to 361 

two-products model. The α1, α2, Kom,1, and Kom,2 is 0.4626, 0.04287, 0.0134 and 0.01124, 362 

respectively. As shown in Table S6, the values of Kom,1, and Kom,2 fall in the same range reported 363 

in literatures, while α2 are slightly smaller than other studies, also indicating that the more low-364 

volatile products formed in the chamber due to lower wall loss. In addition, the fitting-curve in 365 

this study is steeper than other reports. This may be resulted from the different adsorptive 366 

property for initial, intermediate and end species on different-material of the chamber and/or 367 

the distribution of oxidation products under different reaction conditions. 368 
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 369 

Figure. 5 Comparison of yield data obtained for α-pinene ozonolysis experiments in BUCT 370 

chamber with other chamber facilities 371 

Based on full characterizations, it has been demonstrated that the BUCT chamber can be 372 

used to investigate both photochemistry and atmospheric chemistry in the dark related to 373 

secondary pollutants formation. Unlike traditional smog chambers made of Teflon film, the 374 

quartz chamber does not need to replace the reactor periodically because the inner wall of the 375 

reactor is water-washable to significantly reduce the contamination from the deposited 376 

pollutants on the walls. After cleaning, the quartz chamber is particularly suitable for studying 377 

atmospheric chemical mechanism and kinetics under low background conditions. Compared 378 

with other no-Teflon chamber such as CLOUD chamber, the adjustable light intensity (JNO2) 379 

makes our quartz chamber being suitable for simulating the atmospheric photochemistry in 380 

different seasons and the diurnal photochemistry in Beijing. This quartz chamber also enables 381 

AHL/BUCT being capable of performing field observations and laboratory simulations on the 382 
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transformation of gas-phase pollutants, nucleation, growth, aging and effects of atmospheric 383 

aerosols at molecular, cluster, nanometer and micron level.  384 
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Comparison of particle wall loss rates of BUCT chamber with other chamber facilities; 392 

Experimental conditions and resulting SOA data of toluene photooxidation experiments; Four-393 

parameters summary of two-product model used to simulate aerosol mass and yield; 394 

Experimental conditions and resulting SOA data of α-pinene ozonolysis experiments; 395 

Comparison of the wavelength region with other indoor chambers; The picture of the 396 
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of pressure in a typical experiment; Concentration-time plot of NOx after each pulse; Measured 398 

transmittance and spectrum of 365 nm UV light; The light intensity distribution of different 399 

distances from the UV lights; Particle wall loss rate constants for different particle diameter 400 

sizes; Mass spectra of H3O
+ charged ion measured by Vocus-PTR; The time series of the gas 401 

species and diameter in the toluene-NOx photochemical experiments; The variations of the 402 
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experiments and comparison with other chambers.) 404 
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