73 research outputs found

    Iterative approach of 3D datum transformation with a non-isotropic weight

    Get PDF

    Responses of plant species to different aboveground removal treatments with implications for vegetation restoration in the Mu Us Sandland (Inner Mongolia)

    Get PDF
    It is generally assumed that plants can respond to varying degrees of physical damage by growth compensation via resprouting, and resprouting is a key functional trait in many species. Few studies have investigated how grass and shrub species distributed in moving dunes and semifixed dunes in semiarid areas respond to the combined effects of temperature and shoot removal. Medicago sativa, Artemisia ordosica, and Artemisia sphaerocephala plants were grown in a glasshouse for 8 weeks at air temperatures of 10/20°C, 12.5/22.5°C, 15/25°C, and 17.5/27.5°C (night/day) and were subjected to treatments of removing all leaves (LR), removing all leaves followed by cutting at half the plant height (HC), and removing all aboveground tissue (WC). The species, temperature, and damage extent had significant effects on the shoot number, leaf mass ratio, leaf area ratio and ratio of belowground to aboveground dry matter, and the species had a significant effect on the net assimilation rate, specific leaf area, and total biomass. The three species grew well under the HC and LR treatments, and high temperatures (15/25°C and 17.5/27.5°C) significantly promoted the regrowth of the three species. Medicago sativa grew faster than the two Artemisia species. Medicago sativa can be used for fertilizing or vegetation restoration in unimportant conservation areas, and the two Artemisia species can be effectively used for vegetation restoration in the Mu Us Sandland. Due to the low labor costs and the local climate conditions, plants should be clipped before the beginning of the main growing season (end of May or early June) to ensure rapid growth

    Simulation study of BESIII with stitched CMOS pixel detector using ACTS

    Full text link
    Reconstruction of tracks of charged particles with high precision is very crucial for HEP experiments to achieve their physics goals. As the tracking detector of BESIII experiment, the BESIII drift chamber has suffered from aging effects resulting in degraded tracking performance after operation for about 15 years. To preserve and enhance the tracking performance of BESIII, one of the proposals is to add one layer of thin CMOS pixel sensor in cylindrical shape based on the state-of-the-art stitching technology, between the beam pipe and the drift chamber. The improvement of tracking performance of BESIII with such an additional pixel detector compared to that with only the existing drift chamber is studied using the modern common tracking software ACTS, which provides a set of detector-agnostic and highly performant tracking algorithms that have demonstrated promising performance for a few high energy physics and nuclear physics experiments

    Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments

    No full text
    Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid had better thermal stability, because no functional groups were introduced on the surface
    corecore