13 research outputs found

    Microbial assemblies associated with temperature sensitivity of soil respiration along an altitudinal gradient

    Get PDF
    10 pĂĄginas.. 4 figuras.- referencias.- Supplementary data to this article can be found online at https://doi. org/10.1016/j.scitotenv.2022.153257Identifying the drivers of the response of soil microbial respiration to warming is integral to accurately forecasting the carbon-climate feedbacks in terrestrial ecosystems. Microorganisms are the fundamental drivers of soil microbial respiration and its response to warming; however, the specific microbial communities and properties involved in the process remain largely undetermined. Here, we identified the associations between microbial community and temperature sensitivity (Q10) of soil microbial respiration in alpine forests along an altitudinal gradient (from 2974 to 3558 m) from the climate-sensitive Tibetan Plateau. Our results showed that changes in microbial community composition accounted for more variations of Q10 values than a wide range of other factors, including soil pH, moisture, substrate quantity and quality, microbial biomass, diversity and enzyme activities. Specifically, co-occurring microbial assemblies (i.e., ecological clusters or modules) targeting labile carbon consumption were negatively correlated with Q10 of soil microbial respiration, whereas microbial assemblies associated with recalcitrant carbon decomposition were positively correlated with Q10 of soil microbial respiration. Furthermore, there were progressive shifts of microbial assemblies from labile to recalcitrant carbon consumption along the altitudinal gradient, supporting relatively high Q10 values in high-altitude regions. Our results provide new insights into the link between changes in major microbial assemblies with different trophic strategies and Q10 of soil microbial respiration along an altitudinal gradient, highlighting that warming could have stronger effects on microbially-mediated soil organic matter decomposition in high-altitude regions than previously thought.This research was supported by the National Natural Science Foundation of China (32071595 and 41830756). We also thank the Fundamental Research Funds for the Central Universities (Program no. 2662019PY010 and 2662019QD055), Natural Science Fund of Hubei Province (2019CFA094), and the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA20040502). We thank Hailong Li for his assistance in field sampling, and Jinhuang Lin for mapping sample locations. M.D-B. is supported by a RamĂłn y Cajal grant from the Spanish Government (agreement no. RYC2018-025483-I). ReferencesPeer reviewe

    Genetic Variation of Promoter Sequence Modulates XBP1 Expression and Genetic Risk for Vitiligo

    Get PDF
    Our previous genome-wide linkage analysis identified a susceptibility locus for generalized vitiligo on 22q12. To search for susceptibility genes within the locus, we investigated a biological candidate gene, X-box binding protein 1(XBP1). First, we sequenced all the exons, exon-intron boundaries as well as some 5â€Č and 3â€Č flanking sequences of XBP1 in 319 cases and 294 controls of Chinese Hans. Of the 8 common variants identified, the significant association was observed at rs2269577 (p_trend = 0.007, OR = 1.36, 95% CI = 1.09–1.71), a putative regulatory polymorphism within the promoter region of XBP1. We then sequenced the variant in an additional 365 cases and 404 controls and found supporting evidence for the association (p_trend = 0.008, OR = 1.31, 95% CI = 1.07–1.59). To further validate the association, we genotyped the variant in another independent sample of 1,402 cases and 1,288 controls, including 94 parent-child trios, and confirmed the association by both case-control analysis (p_trend = 0.003, OR = 1.18, 95% CI = 1.06–1.32) and the family-based transmission disequilibrium test (TDT, p = 0.005, OR = 1.93, 95% CI = 1.21–3.07). The analysis of the combined 2,086 cases and 1,986 controls provided highly significant evidence for the association (p_trend = 2.94×10−6, OR = 1.23, 95% CI = 1.13–1.35). Furthermore, we also found suggestive epistatic effect between rs2269577 and HLA-DRB1*07 allele on the development of vitiligo (p = 0.033). Our subsequent functional study showed that the risk-associated C allele of rs2269577 had a stronger promoter activity than the non-risk G allele, and there was an elevated expression of XBP1 in the lesional skins of patients carrying the risk-associated C allele. Therefore, our study has demonstrated that the transcriptional modulation of XBP1 expression by a germ-line regulatory polymorphism has an impact on the development of vitiligo

    The <i>Paeonia qiui</i> R2R3-MYB Transcription Factor PqMYBF1 Positively Regulates Flavonol Accumulation

    No full text
    Tree peony is a “spring colored-leaf” plant which has red leaves in early spring, and the red color of the leaves usually fades in late spring. Flavonols are one subgroup of flavonoids, and they affect the plant organs’ color as co-pigments of anthocyanins. To investigate the color variation mechanism of leaves in tree peony, PqMYBF1, one flavonol biosynthesis-related MYB gene was isolated from Paeonia qiui and characterized. PqMYBF1 contained the SG7 and SG7-2 motifs which are unique in flavonol-specific MYB regulators. Subcellular localization and transactivation assay showed that PqMYBF1 localized to the nucleus and acted as a transcriptional activator. The ectopic expression of PqMYBF1 in transgenic tobacco caused an observable increase in flavonol level and the anthocyanin accumulation was decreased significantly, resulting in pale pink flowers. Dual-luciferase reporter assays showed that PqMYBF1 could activate the promoters of PqCHS, PqF3H, and PqFLS. These results suggested that PqMYBF1 could promote flavonol biosynthesis by activating PqCHS, PqF3H, and PqFLS expression, which leads metabolic flux from anthocyanin to flavonol pathway, resulting in more flavonol accumulation. These findings provide a new train of thought for the molecular mechanism of leaf color variation in tree peony in spring, which will be helpful for the molecular breeding of tree peony with colored foliage

    Apolipoprotein E Gene Variants and Risk of Coronary Heart Disease: A Meta-Analysis

    No full text
    Objectives. Apo E genes involved in lipoprotein synthesis and metabolism are considered one of the candidates to CHD. However, the results remain conflicting. Methods. We performed this meta-analysis based on 30 published studies including 11,804 CHD patients and 17,713 controls. Results. Compared with the wild genotype E3/3, the variant genotypes ApoEE3/4 and E4/4 were associated with 22% and 45% increased risk of CHD, respectively (E3/4 versus E3/3: OR = 1.22, 95% CI = 1.15–1.29; E4/4 versus E3/3: OR = 1.45, 95% CI = 1.23–1.71). Besides, compared with Δ3 allele, carriers with the Δ4 allele had a 46% increased risk of CHD (OR = 1.46, 95% CI = 1.28–1.66), while the Δ2 had no significantly decreased risk of CHD. In the subgroup analysis by ethnicity, Δ4 had a 25% increased risk of CHD in Caucasians (OR = 1.25, 95% CI = 1.11–1.41), and the effects were more evident in Mongolians (OR = 2.29, 95% CI = 1.89–2.77). The Δ2 allele had a decreased risk of CHD in Caucasians (OR = 0.84, 95% CI = 0.74–0.96), but not in Mongolians. Conclusions. The analysis suggested that ApoEΔ4 mutation was associated with the increased risk of CHD, while ApoEΔ2 allele had a decreased risk of CHD just in Caucasians

    Climatic seasonality challenges the stability of microbial-driven deep soil carbon accumulation across China

    No full text
    10 pĂĄginas- 4 figuras.- referencias.- Additional supporting information can be found online in the Supporting Information section at the end of this articleMicrobial residues contribute to the long-term stabilization of carbon in the entire soil profile, helping to regulate the climate of the planet; however, how sensitive these residues are to climatic seasonality remains virtually unknown, especially for deep soils across environmental gradients. Here, we investigated the changes of microbial residues along soil profiles (0–100 cm) from 44 typical ecosystems with a wide range of climates (~3100 km transects across China). Our results showed that microbial residues account for a larger portion of soil carbon in deeper (60–100 cm) vs. shallower (0–30 and 30–60 cm) soils. Moreover, we find that climate especially challenges the accumulation of microbial residues in deep soils, while soil properties and climate share their roles in controlling the residue accumulation in surface soils. Climatic seasonality, including positive correlations with summer precipitation and maximum monthly precipitation, as well as negative correlations with temperature annual range, are important factors explaining microbial residue accumulation in deep soils across China. In particular, summer precipitation is the key regulator of microbial-driven carbon stability in deep soils, which has 37.2% of relative independent effects on deep-soil microbial residue accumulation. Our work provides novel insights into the importance of climatic seasonality in driving the stabilization of microbial residues in deep soils, challenging the idea that deep soils as long-term carbon reservoirs can buffer climate change. © 2023 John Wiley & Sons Ltd.This research was supported by the National Natural Science Foundation of China (42207391, 32071595 and 42177022). M.D‐B. is also supported by a project from the Spanish Ministry of Science and Innovation (PID2020‐115813RA‐I00), and a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the ConsejerĂ­a de TransformaciĂłn EconĂłmica, Industria, Conocimiento y Universidades of the Junta de AndalucĂ­a (FEDER AndalucĂ­a 2014‐2020 Objetivo temĂĄtico “01—Refuerzo de la investigaciĂłn, el desarrollo tecnolĂłgico y la innovaciĂłn”) associated with the research project P20_00879 (ANDABIOMA).Peer reviewe
    corecore