8 research outputs found

    Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction

    No full text
    Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play an important role in regulating the vital functions of living organisms. Knowledge of their biodistribution in real-time could help diagnose a variety of conditions. However, existing methods of biothiol detection are invasive and require assays. Herein we report a molecular biosensor for biothiol detection using the nuclear spin resonance of <sup>129</sup>Xe. The <sup>129</sup>Xe biosensor consists of a cryptophane cage encapsulating a xenon atom and an acrylate group. The latter serves as a reactive site to covalently bond biothiols through a thiol-addition reaction. The biosensor enables discrimination of Cys from Hcy and GSH through the chemical shift and average reaction rate. This biosensor can be detected at a concentration of 10 μM in a single scan and it has been applied to detect biothiols in bovine serum solution. Our results indicate that this biosensor is a promising tool for the real-time imaging of biothiol distributions

    Mitochondria Targeted and Intracellular Biothiol Triggered Hyperpolarized <sup>129</sup>Xe Magnetofluorescent Biosensor

    No full text
    Biothiols such as gluthathione (GSH), cysteine (Cys), homocysteine (Hcy), and thioredoxin (Trx) play vital roles in cellular metabolism. Various diseases are associated with abnormal cellular biothiol levels. Thus, the intracellular detection of biothiol levels could be a useful diagnostic tool. A number of methods have been developed to detect intracellular thiols, but sensitivity and specificity problems have limited their applications. To address these limitations, we have designed a new biosensor based on hyperpolarized xenon magnetic resonance detection, which can be used to detect biothiol levels noninvasively. The biosensor is a multimodal probe that incorporates a cryptophane-A cage as <sup>129</sup>Xe NMR reporter, a naphthalimide moiety as fluorescence reporter, a disulfide bond as thiol-specific cleavable group, and a triphenylphosphonium moiety as mitochondria targeting unit. When the biosensor interacts with biothiols, disulfide bond cleavage leads to enhancements in the fluorescence intensity and changes in the <sup>129</sup>Xe chemical shift. Using Hyper-CEST (chemical exchange saturation transfer) NMR, our biosensor shows a low detection limit at picomolar (10<sup>–10</sup> M) concentration, which makes a promise to detect thiols in cells. The biosensor can detect biothiol effectively in live cells and shows good targeting ability to the mitochondria. This new approach not only offers a practical technique to detect thiols in live cells, but may also present an excellent in vivo test platform for xenon biosensors
    corecore