375 research outputs found

    The space group classification of topological band insulators

    Full text link
    Topological band insulators (TBIs) are bulk insulating materials which feature topologically protected metallic states on their boundary. The existing classification departs from time-reversal symmetry, but the role of the crystal lattice symmetries in the physics of these topological states remained elusive. Here we provide the classification of TBIs protected not only by time-reversal, but also by crystalline symmetries. We find three broad classes of topological states: (a) Gamma-states robust against general time-reversal invariant perturbations; (b) Translationally-active states protected from elastic scattering, but susceptible to topological crystalline disorder; (c) Valley topological insulators sensitive to the effects of non-topological and crystalline disorder. These three classes give rise to 18 different two-dimensional, and, at least 70 three-dimensional TBIs, opening up a route for the systematic search for new types of TBIs.Comment: Accepted in Nature Physic

    MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria

    Get PDF
    SummaryFas apoptotic signaling regulates diverse physiological processes. Acute activation of Fas signaling triggers massive apoptosis in liver. Upon Fas receptor stimulation, the BH3-only protein Bid is cleaved into the active form, tBid. Subsequent tBid recruitment to mitochondria, which is facilitated by its receptor MTCH2 at the outer mitochondrial membrane (OMM), is a critical step for commitment to apoptosis via the effector proteins Bax or Bak. MOAP-1 is a Bax-binding protein enriched at the OMM. Here, we show that MOAP-1-deficient mice are resistant to Fas-induced hepatocellular apoptosis and lethality. In the absence of MOAP-1, mitochondrial accumulation of tBid is markedly impaired. MOAP-1 binds to MTCH2, and this interaction appears necessary for MTCH2 to engage tBid. These findings reveal a role for MOAP-1 in Fas signaling in the liver by promoting MTCH2-mediated tBid recruitment to mitochondria

    Liquefaction structures induced by the M5.7 earthquake on May 28, 2018 in Songyuan, Jilin Province, NE China and research implication

    Get PDF
    Acknowledgements Many thanks to Yang Wang, Wei Chen and Dong-Hao Peng from Jilin Oilfield for their help in the field investigation. We thank Dr. Lv Wang from Monash University and Dr. Gail Maxwell from the University of Aberdeen for their valuable advice on sedimentology, and we also thank Dr. Gui-Dong Ping and Dr. Zhao-Han Xie for the discussion we had about the regional tectonic stress field. We are grateful to Professor Zeng-Zhao Feng, editors and two anonymous reviewers for their editorial work and many constructive comments and suggestions that greatly improved this manuscript. Funding This study is supported by the “Natural Science Foundation of Heilongjiang Province (No. JJ2016ZR0573)”, “Youth Foundation of Northeast Petroleum University (No. NEPUBS201503)”, “Northeast Petroleum University Scientific Research Start-up Fund”, “Shandong Provincial Key Laboratory of Depositional Mineralization and Mineral Foundation (No. DMSMZO17009)”, and “Natural Science Foundation of Shandong Province (No. ZR2016DB15)”. Authors’ contributions ZFS applied for the funding, performed the research, analyzed the data, compiled a few figures and wrote the manuscript. JHZ designed the work, took part in the field trip and interpreted the data. JH interpreted part of the data and revised the manuscript. BH took part in the field trip, collected data and compiled Fig. 5. XWL interpreted part of the data and revised the manuscript. ZXL collected papers and completed some figures. WMR collected some data and compiled Fig. 2. YFZ, HQY, and JLL interpreted some of the data. LTN and GXS took part in fieldwork and collected data. JJL, WXZ and BZ interpreted some data and compiled some figures. All authors approved the final manuscript. Availability of data and materials All data generated or analyzed during this study are included in this published article. Additional data related to this paper can be requested from the corresponding author.Peer reviewedPublisher PD

    ABSCISIC ACID-INSENSITIVE 5-KIP-RELATED PROTEIN 1-SHOOT MERISTEMLESS modulates reproductive development of Arabidopsis

    Get PDF
    Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5–KRP1–STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency

    EVALUATION OF EFFECTIVENESS IN A NOVEL WOUND HEALING OINTMENT-CROCODILE OIL BURN OINTMENT

    Get PDF
    Background: Crocodile oil and its products are used as ointments for burns and scalds in traditional medicines. A new ointment formulation - crocodile oil burn ointment (COBO) was developed to provide more efficient wound healing activity. The purpose of the study was to evaluate the burn healing efficacy of this new formulation by employing deep second-degree burns in a Wistar rat model. The analgesic and anti-inflammatory activities of COBO were also studied to provide some evidences for its further use. Materials and methods: The wound healing potential of this formulation was evaluated by employing a deep second-degree burn rat model and the efficiency was comparatively assessed against a reference ointment – (1% wt ⁄ wt) silver sulfadiazine (SSD). After 28 days, the animals were euthanized and the wounds were removed for transversal and longitudinal histological studies. Acetic acid-induced writhing in mice was used to evaluate the analgesic activity and its anti-inflammatory activity was observed in xylene -induced edema in mice. Results: COBO enhanced the burn wound healing (20.5±1.3 d) as indicated by significant decrease in wound closure time compared with the burn control (25.0±2.16 d) (

    Reduction in interhemispheric functional connectivity in the dorsal visual pathway in unilateral acute open globe injury patients: a resting-state fMRI study

    Get PDF
    This study investigated the changes in interhemispheric functional connectivity (FC) of the whole brain in open globe injury (OGI) patients, using voxel-mirrored homotopic connectivity (VMHC), and their relationships with clinical features. Totally, 16 male and 2 female acute OGI patients and 18 sex, age, and education-matched healthy volunteers were enrolled in the study. All subjects were scanned through functional magnetic resonance imaging (fMRI). Receiver operating characteristic (ROC) curves analyses had been used to identify the VMHC in these brain areas could be used as biomarkers to distinguish OGI and from healthy control (HC). The mean VMHC values in multiple brain areas and clinical OGI manifestations were evaluated with a Pearson correlation analysis. OGI patients had significantly decreased VMHC in the bilateral calcarine/lingual/cuneus (BA18, 19, 30) and middle occipital gyrus (BA18, 19). The OGI patients had abnormal interhemispheric FC in the dorsal visual pathway, which may represent the pathophysiological mechanism that underlies acute vision loss after OGI

    Beam test of a 180 nm CMOS Pixel Sensor for the CEPC vertex detector

    Full text link
    The proposed Circular Electron Positron Collider (CEPC) imposes new challenges for the vertex detector in terms of pixel size and material budget. A Monolithic Active Pixel Sensor (MAPS) prototype called TaichuPix, based on a column drain readout architecture, has been developed to address the need for high spatial resolution. In order to evaluate the performance of the TaichuPix-3 chips, a beam test was carried out at DESY II TB21 in December 2022. Meanwhile, the Data Acquisition (DAQ) for a muti-plane configuration was tested during the beam test. This work presents the characterization of the TaichuPix-3 chips with two different processes, including cluster size, spatial resolution, and detection efficiency. The analysis results indicate the spatial resolution better than 5 ÎŒm\mu m and the detection efficiency exceeds 99.5 % for both TaichuPix-3 chips with the two different processes

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde

    SDSS-IV MaNGA: properties of galaxies with kinematically decoupled stellar and gaseous components

    Get PDF
    We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M∗, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 ‘Green Valley’ and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the starforming ones have positive gradient in Dn4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative Dn4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star-forming galaxies with kinematically misaligned gas and stars − the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas–gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally concentrated star formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass
    • 

    corecore