49 research outputs found

    One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes

    Get PDF
    We report on the one-pot synthetic procedure of cyclen derivatives bearing three acetate groups attached on boehmite nanoparticles, the complexing capabilities of these inorganic–organic hybrid materials with rare earth cations, and the behaviour as contrast agents or fluorescence probes.Delgado Pinar, Estefania, [email protected] ; Frias Martinez, Juan Carlos, [email protected] ; Albelda Gimeno, Maria Teresa, [email protected] ; Alarcon Navarro, Javier, [email protected] ; Garcia-España Monsonis, Enrique, [email protected]

    Nanoencapsulation of luminescent 3-hydroxypicolinate lanthanide complexes

    Get PDF
    We have synthesized luminescent nanoparticles comprising a core of lanthanide complexes and shells of amorphous silica using reverse micelles as nanoreactors. 3-Hydroxypicolinate complexes of Eu(III), Tb(III), and the corresponding heteronuclear complexes have been investigated as the photoactive cores. The size of the silica particles is within the nanometer scale, which, together with the ability for surface biofunctionalization, opens up perspectives for their use in bioapplications. Optical studies of the as-prepared nanoparticles reveal that the luminescence properties of the 3-hydroxypicolinate complexes in the matrices are markedly different from their original features

    l -Glutamate biosensor for estimation of the taste of tomato specimens

    Get PDF
    Abstract An amperometric biosensor has been developed for measurement of Umami, or the taste based on the amount of l-glutamate, in tomato foods. The biosensor is based on an enzyme-mediator system in which l-glutamate oxidase is used for biochemical oxidation of l-glutamate and a tetrafulvalene-tetracyanoquinodimethane (TTF-TCNQ) paste, prepared from the mixture of TTF-TCNQ salt, graphite powder, and silicone oil, serves as the mediator. The limit of detection, calculated by use of a four-parameter logistic model, was 0.05 mmol L-1, and the limit of quantification was 0.15 mmol L-1. The correlation coefficient (R 2) was 0.990 and the relative standard deviation was no more than 1% (n=5). The response time (t 95) was 20–50 s, depending on concentration. The repeatability of the sensor was better than 5% (n=10). The sensor developed was stable for more than ten days
    corecore