10 research outputs found
Comparative Analysis of Different Remote Sensing Techniques for Mapping of Supraglacial Lakes on Hispar Glacier
The glacier changes are very significant in quantifying the direct effects of climate change. The glaciers inthe northern Pakistan especially in the Karakoram pose a large change in relief and are difficult to access due tocomplex topography. The global WOS (Web of Science) database indicate only a few studies conducted so far in thisregion in the domain of climate and cryosphere. The studies relating to glacial hazards in this region are even less. Thisstudy involves the mapping of supraglacial lakes on Hispar glacier using multiple remote sensing methods. Theaccuracy of results from those methods is discussed. Remote Sensing and GIS techniques have been applied to timeseries of Landsat images of years 2017, 2016, 2010, 2000 and 1990 (in the descending order) to quantify thesupraglacial lakes on the Hispar glacier. The remote sensing techniques include Band Rationing, Normalized WaterIndex (NDWI), Classification i.e. Unsupervised and Panchromatic Sharpening Image Enhancement Technique for theyears of 2017 and 2016 imageries. After defining the Hunza basin (involving of high resolution DEMs), all the satellitederived imageries have been preprocessed and processed. GIS tools have been used to calculate the areal extents ofyearly obtained supraglacial lakes and compare temporally with passing years, which in turn gave an accuratecomparative analysis among different remote sensing techniques. The satellite derived time series map layouts of eachtechnique have been formulated. The vulnerable supraglacial lakes on Hispar glacier of areal sizes ≤ 0.05 sq.km havealso been identified and delineate
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Development of Government Schools in Orangi Town, Karachi
The primary school system in Pakistan needs improvement in order to provide the basic right of education to all. Government schools are not enough to cater the needs of increasing population of the country. The main goal of this study was to present a methodology for the development of government schools based on geographical information system (GIS) through a case study of Orangi Town in Karachi. In this study, first the adequacy of government schools in the study area was evaluated and then the need for additional schools with their suitable locations were identified. Data regarding school locations and students enrollments were collected from Sindh Basic Education Program of a non-profit NGO iMMAP. School building footprints were digitized from 2001 and 2013 Google Earth archived images. Population in 2013 was estimated by projecting 1998 census data downloaded from the website of the Census Bureau of Pakistan. An educated assumption of 20 % of the total population of Orangi Town was used to calculate number of primary school-aged children. Study results showed that schools existed in 2013 were not sufficient to serve all these children. This study also revealed that new schools were built during this time period, but the population growth rate was much higher than the growth rate of schools that created a big supply-demand gap. The most progressive Union Council (UC) of Orangi Town was Haryana Colony where 17 new schools were constructed between 2001 and 2013 though the required number of schools still fall short. New sites for schools were also proposed to optimally serve Orangi Town’s residents using GIS proximity analysis
Towards successful business process improvement - An extension of change acceleration process model.
Change Acceleration Process model (CAP) emerged in early 90's as a set of principles for accelerating change management efforts in organizations. Business Process Improvement (BPI) projects open avenues of opportunity and success for organizations in this highly competitive era. However, most of these projects fail due to lack of commitment, communication, scope creep and inadequate resources. This research attempts to study industry relevant factors most critical to success of a BPI Project in the highly competitive telecom sector. Modified Delphi technique employing a panel of telecom professionals was adopted in order to determine the critical success factors (CSFs) after a thorough review of the literature. Exploratory factor analysis was performed to map extracted factors to the five agents of change. Research outcome defines the relevant CSFs in terms of vision, skills, incentives, resources and action plan. A significant contribution of this research is an extended CAP model for implementation of BPI projects. Practical implications of this research are utilization of the proposed model for BPI project success
Synergistic Anti-Angiogenic Effect of Combined VEGFR Kinase Inhibitors, Lenvatinib, and Regorafenib: A Therapeutic Potential for Breast Cancer
Background: Breast cancer currently affects more than two million women worldwide, and its incidence is steadily increasing. One of the most essential factors of invasion and metastasis of breast cancer cells is angiogenesis and non-angiogenic vascularization. Lenvatinib and Regorafenib share the same anti-angiogenic effect by inhibiting vascular endothelial growth factor receptors (VEGFRs subtypes 1 to 3) and have been approved for treating different types of cancer. Methods: We investigated Lenvatinib and Regorafenib effects on a well-established in-vitro model of breast cancer using MCF-7 (estrogen, progesterone receptor-positive, and HER2-negative), MDA-MB-231 (triple negative), as well as Human Umbilical Vascular Endothelial Cell line (HUVEC) cell lines. We performed the cell viability assay on four groups of cells, which included a control group, a Lenvatinib treated only group, a Regorafenib treated only group, and a group treated with a combination of both drugs at 24, 48, and 72 h. Data were analyzed as means ± standard deviation, and the drug–drug interactions with Compusyn software. Cellular migration assay, tube formation assay, and Western blots were conducted to determine the functional and the protein expression of downstream signals such as Caspase-9, anti-apoptotic Survivin, P-ERK, and total-ERK in the control and treatment groups. Results: MCF-7 cells showed a reduction in cell survival rates with higher dosing and longer incubation periods with each drug and with the combination of drugs. A synergistic interaction was identified (CI < 1) with both drugs on MCF7 at different dose combinations and at a higher dose in MDA-MB-231 cells. Furthermore, there was a marked decrease in the anti-angiogenic effect of both drugs in tube formation assay using MDA-MB-231 cells and survivin protein expression in MCF-7, and those antitumor markers showed a better outcome in drug combination than the use of each drug alone. Conclusion: Our result is the first to report the synergistic anti-angiogenic potential of combination therapy of Lenvatinib and Regorafenib. Therefore, it shows their therapeutic potential in breast cancer, including the aggressive types. Further studies are warranted to confirm and explore this therapeutic approach
Synergistic Anti-Angiogenic Effect of Combined VEGFR Kinase Inhibitors, Lenvatinib, and Regorafenib: A Therapeutic Potential for Breast Cancer
Background: Breast cancer currently affects more than two million women worldwide, and its incidence is steadily increasing. One of the most essential factors of invasion and metastasis of breast cancer cells is angiogenesis and non-angiogenic vascularization. Lenvatinib and Regorafenib share the same anti-angiogenic effect by inhibiting vascular endothelial growth factor receptors (VEGFRs subtypes 1 to 3) and have been approved for treating different types of cancer. Methods: We investigated Lenvatinib and Regorafenib effects on a well-established in-vitro model of breast cancer using MCF-7 (estrogen, progesterone receptor-positive, and HER2-negative), MDA-MB-231 (triple negative), as well as Human Umbilical Vascular Endothelial Cell line (HUVEC) cell lines. We performed the cell viability assay on four groups of cells, which included a control group, a Lenvatinib treated only group, a Regorafenib treated only group, and a group treated with a combination of both drugs at 24, 48, and 72 h. Data were analyzed as means ± standard deviation, and the drug–drug interactions with Compusyn software. Cellular migration assay, tube formation assay, and Western blots were conducted to determine the functional and the protein expression of downstream signals such as Caspase-9, anti-apoptotic Survivin, P-ERK, and total-ERK in the control and treatment groups. Results: MCF-7 cells showed a reduction in cell survival rates with higher dosing and longer incubation periods with each drug and with the combination of drugs. A synergistic interaction was identified (CI < 1) with both drugs on MCF7 at different dose combinations and at a higher dose in MDA-MB-231 cells. Furthermore, there was a marked decrease in the anti-angiogenic effect of both drugs in tube formation assay using MDA-MB-231 cells and survivin protein expression in MCF-7, and those antitumor markers showed a better outcome in drug combination than the use of each drug alone. Conclusion: Our result is the first to report the synergistic anti-angiogenic potential of combination therapy of Lenvatinib and Regorafenib. Therefore, it shows their therapeutic potential in breast cancer, including the aggressive types. Further studies are warranted to confirm and explore this therapeutic approach
Global Incidence and Risk Factors Associated With Postoperative Urinary Retention Following Elective Inguinal Hernia Repair
Importance Postoperative urinary retention (POUR) is a well-recognized complication of inguinal hernia repair (IHR). A variable incidence of POUR has previously been reported in this context, and contradictory evidence surrounds potential risk factors.Objective To ascertain the incidence of, explore risk factors for, and determine the health service outcomes of POUR following elective IHR.Design, Setting, and Participants The Retention of Urine After Inguinal Hernia Elective Repair (RETAINER I) study, an international, prospective cohort study, recruited participants between March 1 and October 31, 2021. This study was conducted across 209 centers in 32 countries in a consecutive sample of adult patients undergoing elective IHR.Exposure Open or minimally invasive IHR by any surgical technique, under local, neuraxial regional, or general anesthesia.Main Outcomes and Measures The primary outcome was the incidence of POUR following elective IHR. Secondary outcomes were perioperative risk factors, management, clinical consequences, and health service outcomes of POUR. A preoperative International Prostate Symptom Score was measured in male patients.Results In total, 4151 patients (3882 male and 269 female; median [IQR] age, 56 [43-68] years) were studied. Inguinal hernia repair was commenced via an open surgical approach in 82.2% of patients (n = 3414) and minimally invasive surgery in 17.8% (n = 737). The primary form of anesthesia was general in 40.9% of patients (n = 1696), neuraxial regional in 45.8% (n = 1902), and local in 10.7% (n = 446). Postoperative urinary retention occurred in 5.8% of male patients (n = 224), 2.97% of female patients (n = 8), and 9.5% (119 of 1252) of male patients aged 65 years or older. Risk factors for POUR after adjusted analyses included increasing age, anticholinergic medication, history of urinary retention, constipation, out-of-hours surgery, involvement of urinary bladder within the hernia, temporary intraoperative urethral catheterization, and increasing operative duration. Postoperative urinary retention was the primary reason for 27.8% of unplanned day-case surgery admissions (n = 74) and 51.8% of 30-day readmissions (n = 72).Conclusions The findings of this cohort study suggest that 1 in 17 male patients, 1 in 11 male patients aged 65 years or older, and 1 in 34 female patients may develop POUR following IHR. These findings could inform preoperative patient counseling. In addition, awareness of modifiable risk factors may help to identify patients at increased risk of POUR who may benefit from perioperative risk mitigation strategies
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic