35 research outputs found

    Harvesting, coupling and control of single exciton coherences in photonic waveguide antennas

    Full text link
    We perform coherent non-linear spectroscopy of individual excitons strongly confined in single InAs quantum dots (QDs). The retrieval of their intrinsically weak four-wave mixing (FWM) response is enabled by a one-dimensional dielectric waveguide antenna. Compared to a similar QD embedded in bulk media, the FWM detection sensitivity is enhanced by up to four orders of magnitude, over a broad operation bandwidth. Three-beam FWM is employed to investigate coherence and population dynamics within individual QD transitions. We retrieve their homogenous dephasing in a presence of spectral wandering. Two-dimensional FWM reveals off-resonant F\"orster coupling between a pair of distinct QDs embedded in the antenna. We also detect a higher order QD non-linearity (six-wave mixing) and use it to coherently control the FWM transient. Waveguide antennas enable to conceive multi-color coherent manipulation schemes of individual emitters.Comment: 7 pages, 8 Figure

    Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses

    Get PDF
    Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in-situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs) achieving their efficient coupling to the external light field. This enables to perform four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the lineshape of the phonon-assisted PL using realistic quantum dot geometries

    Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy

    Get PDF
    We acknowledge the support by the ERC Starting Grant PICSEN, contract no. 306387. D.E.R. is grateful for financial support from the DAAD within the P.R.I.M.E. program.A detailed understanding of the population and coherence dynamics in optically driven individual emitters in solids and their signatures in ultrafast nonlinear-optical signals is of prime importance for their applications in future quantum and optical technologies. In a combined experimental and theoretical study on exciton complexes in single semiconductor quantum dots we reveal a detailed picture of the dynamics employing three-beam polarization-resolved four-wave mixing (FWM) micro-spectroscopy. The oscillatory dynamics of the FWM signals in the exciton-biexciton system is governed by the fine-structure splitting and the biexciton binding energy in an excellent quantitative agreement between measurement and analytical description. The analysis of the excitation conditions exhibits a dependence of the dynamics on the specific choice of polarization configuration, pulse areas and temporal ordering of driving fields. The interplay between the transitions in the four-level exciton system leads to rich evolution of coherence and population. Using two-dimensional FWM spectroscopy we elucidate the exciton-biexciton coupling and identify neutral and charged exciton complexes in a single quantum dot. Our investigations thus clearly reveal that FWM spectroscopy is a powerful tool to characterize spectral and dynamical properties of single quantum structures.PostprintPostprintPeer reviewe

    Perceived discrimination based on the symptoms of covid-19, mental health, and emotional responses–the international online COVISTRESS survey

    Get PDF
    Background Despite the potential detrimental consequences for individuals’ health and discrimination from covid-19 symptoms, the outcomes have received little attention. This study examines the relationships between having personally experienced discrimination based on the symptoms of covid-19 (during the first wave of the pandemic), mental health, and emotional responses (anger and sadness). It was predicted that covid-19 discrimination would be positively related to poor mental health and that this relationship would be mediated by the emotions of anger and sadness. Methods The study was conducted using an online questionnaire from January to June 2020 (the Covistress network; including 44 countries). Participants were extracted from the COVISTRESS database (Ntotal = 280) with about a half declaring having been discriminated due to covid-19 symptoms (N = 135). Discriminated participants were compared to non-discriminated participants using ANOVA. A mediation analysis was conducted to examine the indirect effect of emotional responses and the relationships between perceived discrimination and self-reported mental health. Results The results indicated that individuals who experienced discrimination based on the symptoms of covid-19 had poorer mental health and experienced more anger and sadness. The relationship between covid-19 personal discrimination and mental health disappeared when the emotions of anger and sadness were statistically controlled for. The indirect effects for both anger and sadness were statistically significant. Discussion This study suggests that the covid-19 pandemic may have generated discriminatory behaviors toward those suspected of having symptoms and that this is related to poorer mental health via anger and sadness.publishedVersio

    Multi-wave coherent control of a solid-state single emitter

    Get PDF
    The authors acknowledge support by the European Research Council Starting Grant 'PICSEN' contract no. 306387.Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain.PostprintPeer reviewe

    Unlabelled iododeoxyuridine increases the cytotoxicity and incorporation of [1251]-iododeoxyuridine in two human glioblastoma cell lines

    No full text
    Iododeoxyuridine (IUdR), labelled with radioiodines emitting Auger, alpha or beta- radiation, has been proposed as a therapeutic tool in the treatment of cancer. However, the low per cent incorporation in tumour cells and limited cytotoxicity are major obstacles for such an application. Using unlabelled IUdR as a modulator, we have studied the in vitro cytotoxicity of [125I]-IUdR in two human glioblastoma cell lines. Surprisingly, an enhanced cytotoxicity of [125I]-IUdR was observed in the presence of 0.3-10 microM concentrations of unlabelled IUdR in U251 glioblastoma cells and to a lesser extent in LN229 cells. The presence of unlabelled IUdR unexpectedly increased the incorporation of [125I]-IUdR in both cell lines. Thymidine competitively blocked the cytotoxic effects of combined unlabelled and [125I]-labelled IUdR in these cells and DNA-incorporation of radiolabelled IUdR

    Multi-wave coherent control of a solid-state single emitter

    No full text
    Coherent control of individual two-level systems (TLSs) is at the basis of any implementation of quantum information. An impressive level of control is now achieved using nuclear, vacancies and charge spins. Manipulation of bright exciton transitions in semiconductor quantum dots (QDs) is less advanced, principally due to the sub-nanosecond dephasing. Conversely, owing to their robust coupling to light, one can apply tools of nonlinear spectroscopy to achieve all-optical command. Here, we report on the coherent manipulation of an exciton via multi-wave mixing. Specifically, we employ three resonant pulses driving a single InAs QD. The first two induce a four-wave mixing (FWM) transient, which is projected onto a six-wave mixing (SWM) depending on the delay and area of the third pulse, in agreement with analytical predictions. Such a switch enables to demonstrate the generation of SWM on a single emitter and to engineer the spectro-temporal shape of the coherent response originating from a TLS. These results pave the way toward multi-pulse manipulations of solid state qubits via implementing the NMR-like control schemes in the optical domain

    Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy

    No full text
    A detailed understanding of the population and coherence dynamics in optically driven individual emitters in solids and their signatures in ultrafast nonlinear-optical signals is of prime importance for their applications in future quantum and optical technologies. In a combined experimental and theoretical study on exciton complexes in single semiconductor quantum dots we reveal a detailed picture of the dynamics employing three-beam polarization-resolved four-wave mixing (FWM) micro-spectroscopy. The oscillatory dynamics of the FWM signals in the exciton-biexciton system is governed by the fine-structure splitting and the biexciton binding energy in an excellent quantitative agreement between measurement and analytical description. The analysis of the excitation conditions exhibits a dependence of the dynamics on the specific choice of polarization configuration, pulse areas and temporal ordering of driving fields. The interplay between the transitions in the four-level exciton system leads to rich evolution of coherence and population. Using two-dimensional FWM spectroscopy we elucidate the exciton-biexciton coupling and identify neutral and charged exciton complexes in a single quantum dot. Our investigations thus clearly reveal that FWM spectroscopy is a powerful tool to characterize spectral and dynamical properties of single quantum structures

    Exploring coherence of individual excitons in InAs quantum dots embedded in natural photonic defects:influence of the excitation intensity

    No full text
    The exact optical response of quantum few-level systems depends crucially on the exact choice of the incoming pulse areas. We use four-wave mixing (FWM) spectroscopy to infer the coherent response and dynamics of single InAs quantum dots (QDs) and study their pulse area dependence. By combining atomic force microscopy with FWM hyperspectral imaging, we show that the retrieved FWM signals originate from individual QDs enclosed in natural photonic defects. The optimized light-matter coupling in these defects allows us to perform our studies in a wide range of driving field amplitudes. When varying the pulse areas of the exciting laser pulses Rabi rotations of microscopicinterband coherences can be resolved by the two-pulse FWM technique. We investigate these Rabi coherence rotations within two- and three-level systems, both theoretically and experimentally, and explain their damping by the coupling to acoustic phonons. To highlight the importance of the pulse area in uence, we show that the phonon-induced dephasing of QD excitons depends on the pulse intensity
    corecore