1,245 research outputs found
Recommended from our members
A self-consistent model for the evolution of the gas produced in the debris disc of β Pictoris
This paper presents a self-consistent model for the evolution of gas produced in the debris disc of β Pictoris. Our model proposes that atomic carbon and oxygen are created from the photodissociation of CO, which is itself released from volatile-rich bodies in the debris disc due to grain–grain collisions or photodesorption. While the CO lasts less than one orbit, the atomic gas evolves by viscous spreading resulting in an accretion disc inside the parent belt and a decretion disc outside. The temperature, ionization fraction and population levels of carbon and oxygen are followed with the photodissociation region model CLOUDY, which is coupled to a dynamical viscous α model. We present new gas observations of β Pic, of C I observed with Atacama Pathfinder EXperiment and O I observed with , and show that these along with published CII and CO observations can all be explained with this new model. Our model requires a viscosity α > 0.1, similar to that found in sufficiently ionized discs of other astronomical objects; we propose that the magnetorotational instability is at play in this highly ionized and dilute medium. This new model can be tested from its predictions for high-resolution ALMA observations of C I. We also constrain the water content of the planetesimals in β Pic. The scenario proposed here might be at play in all debris discs and this model could be used more generally on all discs with C, O or CO detections.QK, MW and LM acknowledge support from the European Union through ERC grant number 279973. AJ acknowledges the support of the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw136
Time-Dependent Partition-Free Approach in Resonant Tunneling Systems
An extended Keldysh formalism, well suited to properly take into account the
initial correlations, is used in order to deal with the time-dependent current
response of a resonant tunneling system. We use a \textit{partition-free}
approach by Cini in which the whole system is in equilibrium before an external
bias is switched on. No fictitious partitions are used. Besides the
steady-state responses one can also calculate physical dynamical responses. In
the noninteracting case we clarify under what circumstances a steady-state
current develops and compare our result with the one obtained in the
partitioned scheme. We prove a Theorem of asymptotic Equivalence between the
two schemes for arbitrary time-dependent disturbances. We also show that the
steady-state current is independent of the history of the external perturbation
(Memory Loss Theorem). In the so called wide-band limit an analytic result for
the time-dependent current is obtained. In the interacting case we propose an
exact non-equilibrium Green function approach based on Time Dependent Density
Functional Theory. The equations are no more difficult than an ordinary Mean
Field treatment. We show how the scattering-state scheme by Lang follows from
our formulation. An exact formula for the steady-state current of an arbitrary
interacting resonant tunneling system is obtained. As an example the
time-dependent current response is calculated in the Random Phase
Approximation.Comment: final version, 18 pages, 9 figure
Planet Signatures in Collisionally Active Debris Discs: scattered light images
Planet perturbations are often invoked as a potential explanation for many
spatial structures that have been imaged in debris discs. So far this issue has
been mostly investigated with collisionless N-body numerical models. We
numerically investigate how the coupled effect of collisions and radiation
pressure can affect the formation and survival of radial and azimutal
structures in a disc perturbed by a planet. We consider two set-ups: a planet
embedded within an extended disc and a planet exterior to an inner debris ring.
We use the DyCoSS code of Thebault(2012) and derive synthetic images of the
system in scattered light. The planet's mass and orbit, as well as the disc's
collisional activity are explored as free parameters.
We find that collisions always significantly damp planet-induced structures.
For the case of an embedded planet, the planet's signature, mostly a density
gap around its radial position, should remain detectable in head-on images if
M_planet > M_Saturn. If the system is seen edge-on, however, inferring the
presence of the planet is much more difficult, although some planet-induced
signatures might be observable under favourable conditions.
For the inner-ring/external-planet case, planetary perturbations cannot
prevent collision-produced small fragments from populating the regions beyond
the ring: The radial luminosity profile exterior to the ring is close to the
one it should have in the absence of the planet. However, a Jovian planet on a
circular orbit leaves precessing azimutal structures that can be used to
indirectly infer its presence. For a planet on an eccentric orbit, the ring is
elliptic and the pericentre glow effect is visible despite of collisions and
radiation pressure, but detecting such features in real discs is not an
unambiguous indicator of the presence of an outer planet.Comment: Accepted for Publication in A&A (NOTE: Abridged abstract and
(very)LowRes Figures. Better version, with High Res figures and full abstract
can be found at http://lesia.obspm.fr/perso/philippe-thebault/planpapph.pdf
Unraveling the Mystery of Exozodiacal Dust
Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the Habitable Zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemispheres. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. We focus here on presenting the observational work carried out by our tea
Circumstellar discs: What will be next?
This prospective chapter gives our view on the evolution of the study of
circumstellar discs within the next 20 years from both observational and
theoretical sides. We first present the expected improvements in our knowledge
of protoplanetary discs as for their masses, sizes, chemistry, the presence of
planets as well as the evolutionary processes shaping these discs. We then
explore the older debris disc stage and explain what will be learnt concerning
their birth, the intrinsic links between these discs and planets, the hot dust
and the gas detected around main sequence stars as well as discs around white
dwarfs.Comment: invited review; comments welcome (32 pages
Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations
Recent ALMA observations unveiled the structure of CO gas in the 23 Myr-old
Pictoris planetary system, a component that has been discovered in many
similarly young debris disks. We here present ALMA CO J=2-1 observations, at an
improved spectro-spatial resolution and sensitivity compared to previous CO
J=3-2 observations. We find that 1) the CO clump is radially broad, favouring
the resonant migration over the giant impact scenario for its dynamical origin,
2) the CO disk is vertically tilted compared to the main dust disk, at an angle
consistent with the scattered light warp. We then use position-velocity
diagrams to trace Keplerian radii in the orbital plane of the disk. Assuming a
perfectly edge-on geometry, this shows a CO scale height increasing with radius
as , and an electron density (derived from CO line ratios through
NLTE analysis) in agreement with thermodynamical models. Furthermore, we show
how observations of optically thin line ratios can solve the primordial versus
secondary origin dichotomy in gas-bearing debris disks. As shown for
Pictoris, subthermal (NLTE) CO excitation is symptomatic of H densities
that are insufficient to shield CO from photodissociation over the system's
lifetime. This means that replenishment from exocometary volatiles must be
taking place, proving the secondary origin of the disk. In this scenario,
assuming steady state production/destruction of CO gas, we derive the CO+CO
ice abundance by mass in Pic's exocomets to be at most 6%,
consistent with comets in our own Solar System and in the coeval HD181327
system.LM acknowledges support by STFC and ESO through graduate studentships and, together with MCW and QK, by the European Union through ERC grant number 279973. Work of OP is funded by the Royal Society Dorothy Hodgkin Fellowship, and AMH gratefully acknowledges support from NSF grant AST-1412647.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/mnras/stw241
Debris Disks: Probing Planet Formation
Debris disks are the dust disks found around ~20% of nearby main sequence
stars in far-IR surveys. They can be considered as descendants of
protoplanetary disks or components of planetary systems, providing valuable
information on circumstellar disk evolution and the outcome of planet
formation. The debris disk population can be explained by the steady
collisional erosion of planetesimal belts; population models constrain where
(10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size)
typically form in protoplanetary disks. Gas is now seen long into the debris
disk phase. Some of this is secondary implying planetesimals have a Solar
System comet-like composition, but some systems may retain primordial gas.
Ongoing planet formation processes are invoked for some debris disks, such as
the continued growth of dwarf planets in an unstirred disk, or the growth of
terrestrial planets through giant impacts. Planets imprint structure on debris
disks in many ways; images of gaps, clumps, warps, eccentricities and other
disk asymmetries, are readily explained by planets at >>5au. Hot dust in the
region planets are commonly found (<5au) is seen for a growing number of stars.
This dust usually originates in an outer belt (e.g., from exocomets), although
an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018
Performance of prototypes for the ALICE electromagnetic calorimeter
The performance of prototypes for the ALICE electromagnetic sampling
calorimeter has been studied in test beam measurements at FNAL and CERN. A
array of final design modules showed an energy resolution of about
11% / 1.7 % with a uniformity of the response
to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV.
The electromagnetic shower position resolution was found to be described by 1.5
mm 5.3 mm /. For an electron identification
efficiency of 90% a hadron rejection factor of was obtained.Comment: 10 pages, 10 figure
Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS
The longitudinal polarisation transfer from muons to lambda and anti-lambda
hyperons, D_LL, has been studied in deep inelastic scattering off an
unpolarised isoscalar target at the COMPASS experiment at CERN. The spin
transfers to lambda and anti-lambda produced in the current fragmentation
region exhibit different behaviours as a function of x and xF . The measured x
and xF dependences of D^lambda_LL are compatible with zero, while
D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The
resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and
D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the
frame of recent model calculations.Comment: 13 pages, 7 figure
- …
