2,225 research outputs found

    Autonomous photovoltaic system for night-time lighting in the stable

    Get PDF
    ArticleAutonomous photovoltaic (PV) systems are suitable, for example, for powering various appliances or scientific instruments in the field, for automatic data collection, for signaling, etc. At the Czech University of Life Sciences Prague, we have designed an experimental autonomous PV system designed for night-time lighting for orientating in a stable for horses. The article describes the construction of a PV system with a PV panel rated at 170 Wp, with a lead-acid accumulator and a 1,5 W LED light source. The data collection was automated. The data evaluation shows that during the whole year, the PV system has been recharged and there was no lighting failure. The paper also presents important measured characteristics

    Preparation and Foliar Application of Oligochitosan - Nanosilica on the Enhancement of Soybean Seed Yield

    Full text link
    Oligochitosan with weight average molecu-lar weight (Mw) of 5000 g/mol was prepared by gamma Co-60 radiation degradation of 4% chitosan solution containing 0.5% H2O2 at 21 kGy. Nanosilica with size of 10 – 30 nm was synthesized by calcination of acid treated rice husk at 700o C for 2 h. The mixture of 2% oligo-chitosan-2% nanosilica was prepared by dispersion of nanosilica in oligochitosan solution. Oligochitosan, nanosilica and their mixture were characterized by gel permeation chromatography (GPC), transmission electr-on microscopy (TEM), X-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), Ultraviolet-visible spectroscopy (UV-Vis), and Furrier transform infrared spectroscopy (FT-IR). Effect of foliar application of oli-gochitosan and oligochitosan-nanosilica on soybean seed yield was conducted in experimental field. Results indi-cated that soybean seed yield increased 10.5 and 17.0% for oligochitosan and oligochitosan-nanosilica, respect-tively for the control. Radiation degraded oligo-chitosan and its mixture with nanosilica can be potentially used for cultivation of soybean with enhanced seed yield

    Class based Influence Functions for Error Detection

    Full text link
    Influence functions (IFs) are a powerful tool for detecting anomalous examples in large scale datasets. However, they are unstable when applied to deep networks. In this paper, we provide an explanation for the instability of IFs and develop a solution to this problem. We show that IFs are unreliable when the two data points belong to two different classes. Our solution leverages class information to improve the stability of IFs. Extensive experiments show that our modification significantly improves the performance and stability of IFs while incurring no additional computational cost.Comment: Thang Nguyen-Duc, Hoang Thanh-Tung, and Quan Hung Tran are co-first authors of this paper. 12 pages, 12 figures. Accepted to ACL 202

    Lithium-Doped Two-Dimensional Perovskite Scintillator for Wide-Range Radiation Detection

    Get PDF
    Two-dimensional lead halide perovskites have demonstrated their potential as high-performance scintillators for X- and gamma-ray detection, while also being low-cost. Here we adopt lithium chemical doping in two-dimensional phenethylammonium lead bromide (PEA)2PbBr4 perovskite crystals to improve the properties and add functionalities with other radiation detections. Li doping is confirmed by X-ray photoemission spectroscopy and the scintillation mechanisms are explored via temperature dependent X-ray and thermoluminescence measurements. Our 1:1 Li-doped (PEA)2PbBr4 demonstrates a fast decay time of 11 ns (80%), a clear photopeak with an energy resolution of 12.4%, and a scintillation yield of 11,000 photons per MeV under 662 keV gamma-ray radiation. Additionally, our Li-doped crystal shows a clear alpha particle/gamma-ray discrimination and promising thermal neutron detection through 6Li enrichment. X-ray imaging pictures with (PEA)2PbBr4 are also presented. All results demonstrate the potential of Li-doped (PEA)2PbBr4 as a versatile scintillator covering a wide radiation energy range for various applications

    Burden of injuries in Vietnam: emerging trends from a decade of economic achievement

    Get PDF
    BACKGROUND: Vietnam has been one of the fastest-growing world economies in the past decade. The burden of injuries can be affected by economic growth given the increased exposure to causes of injury as well as decreased morbidity and mortality of those that experience injury. It is of interest to evaluate the trends in injury burden that occurred alongside Vietnam's economic growth in the past decade. METHODS: Results from Global Burden of Disease 2017 were obtained and reviewed. Estimates of incidence, cause-specific mortality, years lived with disability, years of life lost, disability-adjusted life years were analysed and reported for 30 causes of injury in Vietnam from 2007 to 2017. RESULTS: Between 2007 and 2017, the age-standardised incidence rate of all injuries increased by 14.6% (11.5%-18.2%), while the age-standardised mortality rate decreased by 11.6% (3.0%-20.2%). Interpersonal violence experienced the largest increase in age-standardised incidence (28.3% (17.6%-40.1%)), while exposure to forces of nature had the largest decrease in age-standardised mortality (47.1% (37.9%-54.6%)). The five leading causes of injury in both 2007 and 2017 were road injuries, falls, exposure to mechanical forces, interpersonal violence and other unintentional injuries, all of which increased in incidence from 2007 to 2017. Injury burden varied markedly by age and sex. CONCLUSIONS: The rapid expansions of economic growth in Vietnam as well as improvements in the Sociodemographic Index have occurred alongside dynamic patterns in injury burden. These results should be used to develop and implement prevention and treatment programme

    The Atmospheric Infrared Sounder Version 6 Cloud Products

    Get PDF
    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness () are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes
    corecore