260 research outputs found

    A Possible Geographic Origin of Endemic Hepatitis C Virus 6a in Hong Kong: Evidences for the Association with Vietnamese Immigration

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) 6a accounts for 23.6% of all HCV infections of the general population and 58.5% of intravenous drug users in Hong Kong. However, the geographical origin of this highly predominant HCV subgenotype is largely unknown. This study explores a hypothesis for one possible transmission route of HCV 6a to Hong Kong. METHODS: NS5A sequences derived from 26 HCV 6a samples were chosen from a five year period (1999-2004) from epidemiologically unrelated patients from Hong Kong. Partial-NS5A sequences (513-bp from nt 6728 to 7240) were adopted for Bayesian coalescent analysis to reconstruct the evolutionary history of HCV infections in Hong Kong using the BEAST v1.3 program. A rooted phylogenetic tree was drawn for these sequences by alignment with reference Vietnamese sequences. Demographic data were accessed from "The Statistic Yearbooks of Hong Kong". RESULTS: Bayesian coalescent analysis showed that the rapid increase in 6a infections, which had increased more than 90-fold in Hong Kong from 1986 to 1994 correlated to two peaks of Vietnamese immigration to Hong Kong from 1978 to 1997. The second peak, which occurred from 1987 through 1997, overlapped with the rapid increase of HCV 6a occurrence in Hong Kong. Phylogenetic analyses have further revealed that HCV 6a strains from Vietnam may be ancestral to Hong Kong counterparts. CONCLUSIONS: The high predominance of HCV 6a infections in Hong Kong was possibly associated with Vietnamese immigration during 1987-1997

    The Dawn of Open Access to Phylogenetic Data

    Get PDF
    The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation - extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for ~60% of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Although the situation appears dire, our analyses suggest that it is far from hopeless: recent initiatives by the scientific community -- including policy changes by journals and funding agencies -- are improving the state of affairs

    Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes

    Get PDF
    Background: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. Results: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. Conclusions: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.Spanish Ministry of Science and Innovation [CGL2013-45211-C2-2-P, CGL2016-75255-C2-1-P, BES-2011-051469, BES-2014-069575, Doctorado Nacional-567]info:eu-repo/semantics/publishedVersio

    Importation and early local transmission of COVID-19 in Brazil, 2020

    Get PDF
    We conducted the genome sequencing and analysis of the first confirmed COVID-19 infections in Brazil. Rapid sequencing coupled with phylogenetic analyses in the context of travel history corroborate multiple independent importations from Italy and local spread during the initial stage of COVID-19 transmission in Brazil

    A computational method for the identification of dengue, zika and chikungunya virus species and genotypes

    Get PDF
    In recent years, an increasing number of outbreaks of Dengue, Chikungunya and Zika viruses have been reported in Asia and the Americas. Monitoring virus genotype diversity is crucial to understand the emergence and spread of outbreaks, both aspects that are vital to develop effective prevention and treatment strategies. Hence, we developed an efficient method to classify virus sequences with respect to their species and sub-species (i.e. serotype and/or genotype). This tool provides an easy-to-use software implementation of this new method and was validated on a large dataset assessing the classification performance with respect to whole-genome sequences and partial-genome sequences.publishersversionpublishe

    Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity

    Get PDF
    SummaryGlobal dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.</jats:p

    Spatial and Temporal Association of Outbreaks of H5N1 Influenza Virus Infection in Wild Birds with the 0°C Isotherm

    Get PDF
    Wild bird movements and aggregations following spells of cold weather may have resulted in the spread of highly pathogenic avian influenza virus (HPAIV) H5N1 in Europe during the winter of 2005–2006. Waterbirds are constrained in winter to areas where bodies of water remain unfrozen in order to feed. On the one hand, waterbirds may choose to winter as close as possible to their breeding grounds in order to conserve energy for subsequent reproduction, and may be displaced by cold fronts. On the other hand, waterbirds may choose to winter in regions where adverse weather conditions are rare, and may be slowed by cold fronts upon their journey back to the breeding grounds, which typically starts before the end of winter. Waterbirds will thus tend to aggregate along cold fronts close to the 0°C isotherm during winter, creating conditions that favour HPAIV H5N1 transmission and spread. We determined that the occurrence of outbreaks of HPAIV H5N1 infection in waterbirds in Europe during the winter of 2005–2006 was associated with temperatures close to 0°C. The analysis suggests a significant spatial and temporal association of outbreaks caused by HPAIV H5N1 in wild birds with maximum surface air temperatures of 0°C–2°C on the day of the outbreaks and the two preceding days. At locations where waterbird census data have been collected since 1990, maximum mallard counts occurred when average and maximum surface air temperatures were 0°C and 3°C, respectively. Overall, the abundance of mallards (Anas platyrhynchos) and common pochards (Aythya ferina) was highest when surface air temperatures were lower than the mean temperatures of the region investigated. The analysis implies that waterbird movements associated with cold weather, and congregation of waterbirds along the 0°C isotherm likely contributed to the spread and geographical distribution of outbreaks of HPAIV H5N1 infection in wild birds in Europe during the winter of 2005–2006

    Hepatitis C Virus Infection in Guinea-Bissau: A Sexually Transmitted Genotype 2 with Parenteral Amplification?

    Get PDF
    BACKGROUND: Sub-Saharan Africa is the continent with the highest prevalence of Hepatitis C virus (HCV) infection. Genotype 2 HCV is thought to have originated from West Africa several hundred years ago. Mechanisms of transmission remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate mechanisms for HCV transmission in West Africa, we conducted a cross-sectional survey of individuals aged ≥50 years in Bissau, Guinea-Bissau. Dried blood spots were obtained for HCV serology and PCR amplification. Prevalence of HCV was 4.4% (47/1066) among women and 5.0% (27/544) among men. In multivariate analysis, the independent risk factors for HCV infection were age (baseline: 50–59 y; 60–69 y, adjusted odds ratio [AOR]: 1.67, 95% CI: 0.91–3.06; ≥70 y, AOR: 3.47, 95% CI: 1.89–6.39), belonging to the Papel, Mancanha, Balanta or Mandjako ethnic groups (AOR: 2.45, 95% CI:1.32–4.53), originating from the Biombo, Cacheu or Oio regions north of Bissau (AOR: 4.16, 95% CI: 1.18–14.73) and having bought or sold sexual services (AOR: 3.60, 95% CI: 1.88–6.89). Of 57 isolates that could be genotyped, 56 were genotype 2. CONCLUSIONS: Our results suggest that transmission of HCV genotype 2 in West Africa occurs through sexual intercourse. In specific locations and subpopulations, medical interventions may have amplified transmission parenterally
    corecore