202 research outputs found

    Choosing the Factorization Scale in Perturbative QCD

    Get PDF
    We define the collinear factorization scheme, which absorbs only the collinear physics into the parton distribution functions. In order to isolate the collinear physics, we introduce a procedure to combine real and virtual corrections, canceling infrared singularities prior to integration. In the collinear scheme, the factorization scale μ\mu has a simple physical interpretation as a collinear cutoff. We present a method for choosing the factorization scale and apply it to the Drell-Yan process; we find μQ/2\mu \approx Q/2, where QQ is the vector-boson invariant mass. We show that, for a wide variety of collision energies and QQ, the radiative corrections are small in the collinear scheme for this choice of factorization scale.Comment: 25 pages, 18 figure

    Mapping Hydrogen in the Galaxy, Galactic Halo, and Local Group with ALFA: The GALFA-HI Survey Starting with TOGS

    Full text link
    Radio observations of gas in the Milky Way and Local Group are vital for understanding how galaxies function as systems. The unique sensitivity of Arecibo's 305m dish, coupled with the 7-beam Arecibo L-Band Feed Array (ALFA), provides an unparalleled tool for investigating the full range of interstellar phenomena traced by the HI 21cm line. The GALFA (Galactic ALFA) HI Survey is mapping the entire Arecibo sky over a velocity range of -700 to +700 km/s with 0.2 km/s velocity channels and an angular resolution of 3.4 arcminutes. We present highlights from the TOGS (Turn on GALFA Survey) portion of GALFA-HI, which is covering thousands of square degrees in commensal drift scan observations with the ALFALFA and AGES extragalactic ALFA surveys. This work is supported in part by the National Astronomy and Ionosphere Center, operated by Cornell University under cooperative agreement with the National Science Foundation.Comment: 3 pages, including 2 figure pages; figure image quality significantly reduced; for full resolution version, please see http://www.naic.edu/~gibson/cv/ao08_writeup.pdf ; to be published in AIP conference proceedings for ``The Evolution of Galaxies through the Neutral Hydrogen Window'', eds. R. Minchin & E. Momjia

    First Detection of HCO+^+ Absorption in the Magellanic System

    Full text link
    We present the first detection of HCO+^+ absorption in the Magellanic System. Using the Australia Telescope Compact Array (ATCA), we observed 9 extragalactic radio continuum sources behind the Magellanic System and detected HCO+^+ absorption towards one source located behind the leading edge of the Magellanic Bridge. The detection is located at LSR velocity of v=214.0±0.4kms1v=214.0 \pm 0.4\rm\,km\,s^{-1}, with a full width at half maximum of Δv=4.5±1.0kms1\Delta v=4.5\pm 1.0\rm\,km\,s^{-1} and optical depth of τ(HCO+)=0.10±0.02\tau(\rm HCO^+)=0.10\pm 0.02. Although there is abundant neutral hydrogen (HI) surrounding the sightline in position-velocity space, at the exact location of the absorber the HI column density is low, <1020cm2<10^{20}\rm\,cm^{-2}, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remains unclear, dynamical events such as HI flows and cloud collisions in this interacting system likely play an important role.Comment: Accepted for publication in ApJ. 6 pages, 2 figures, 2 table

    Modelling of psoriasis patient flows for the reconfiguration of secondary care services and treatments

    Get PDF
    This paper describes work in collaboration with a large dermatology directorate in South Wales to map out current patient flow and activity levels for psoriasis management. Psoriasis is a chronic skin disease which often has a high impact on patient quality of life. Clinical services for patients with moderate to severe psoriasis tend to be located in secondary care hospitals. The range of services that were studied, their geographical location in relation to the distribution of population, and the population demographics in this health board were not unique; similar profiles for these factors can be found throughout the NHS in England and Wales. The model was created to analyse patient flow through different therapies, with the aim of maximising throughput of patients, eliminating bottlenecks, improving patient access to services and improving patient safety. It was shown that reducing waiting times and improving access to phototherapy would lower overall service costs, as fewer patients would subsequently require systemic and biologic therapies. The model has been used to quantify how recent year-on-year increases in overall spend on psoriasis treatments might be slowed and eventually halted. This would require reallocation of notional cost-savings generated by reducing the rate of increase in the drug spend to fund the development of a more balanced and accessible network of more basic psoriasis services

    Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination

    Get PDF
    Intracellular bacterial pathogens in the family Chlamydiaceae are causes of human blindness, sexually transmitted disease, and pneumonia. Genetic dissection of the mechanisms of chlamydial pathogenicity has been hindered by multiple limitations, including the inability to inactivate genes that would prevent the production of elementary bodies. Many genes are also Chlamydia-specific genes, and chlamydial genomes have undergone extensive reductive evolution, so functions often cannot be inferred from homologs in other organisms. Conditional mutants have been used to study essential genes of many microorganisms, so we screened a library of 4,184 ethyl methanesulfonate-mutagenized Chlamydia trachomatis isolates for temperature-sensitive (TS) mutants that developed normally at physiological temperature (37°C) but not at nonphysiological temperatures. Heat-sensitive TS mutants were identified at a high frequency, while cold-sensitive mutants were less common. Twelve TS mutants were mapped using a novel markerless recombination approach, PCR, and genome sequencing. TS alleles of genes that play essential roles in other bacteria and chlamydia-specific open reading frames (ORFs) of unknown function were identified. Temperature-shift assays determined that phenotypes of the mutants manifested at distinct points in the developmental cycle. Genome sequencing of a larger population of TS mutants also revealed that the screen had not reached saturation. In summary, we describe the first approach for studying essential chlamydial genes and broadly applicable strategies for genetic mapping in Chlamydia spp. and mutants that both define checkpoints and provide insights into the biology of the chlamydial developmental cycle. IMPORTANCE: Study of the pathogenesis of Chlamydia spp. has historically been hampered by a lack of genetic tools. Although there has been recent progress in chlamydial genetics, the existing approaches have limitations for the study of the genes that mediate growth of these organisms in cell culture. We used a genetic screen to identify conditional Chlamydia mutants and then mapped these alleles using a broadly applicable recombination strategy. Phenotypes of the mutants provide fundamental insights into unexplored areas of chlamydial pathogenesis and intracellular biology. Finally, the reagents and approaches we describe are powerful resources for the investigation of these organisms

    The Cosmic Ultraviolet Baryon Survey (CUBS) I. Overview and the diverse environments of Lyman limit systems at z<1

    Full text link
    We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z<~1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman Limit Systems (LLSs) at zabs~ 17.2 over a total redshift survey pathlength of dz=9.3, and a number density of n(z)=0.43 (-0.18, +0.26). Considering all absorbers with log N(HI)/cm^-2 > 16.5 leads to n(z)=1.08 (-0.25, +0.31) at z<1. All LLSs exhibit a multi-component structure and associated metal transitions from multiple ionization states such as CII, CIII, MgII, SiII, SiIII, and OVI absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than 0.1L* at d<~300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disk, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d=15 to 72 pkpc and intrinsic luminosities from ~0.01L* to ~3L*. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities.Comment: 26 pages, 14 figures, MNRAS in pres

    Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass-metallicity relation

    Get PDF
    We use cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments and OverWhelmingly Large Simulations projects to assess the significance of recycled stellar ejecta as fuel for star formation. The fractional contributions of stellar mass-loss to the cosmic star formation rate (SFR) and stellar mass densities increase with time, reaching 35 and 19 per cent, respectively, at z = 0. The importance of recycling increases steeply with galaxy stellar mass forM* < 1010.5M_, and decreases mildly at higher mass. This trend arises from the mass dependence of feedback associated with star formation and AGN, which preferentially suppresses star formation fuelled by recycling. Recycling is more important for satellites than centrals and its contribution decreases with galactocentric radius. The relative contribution of asymptotic giant branch (AGB) stars increases with time and towards galaxy centres. This is a consequence of the more gradual release of AGB ejecta compared to that of massive stars, and the preferential removal of the latter by star formation driven outflows and by lock up in stellar remnants. Recycling-fuelled star formation exhibits a tight, positive correlation with galaxy metallicity, with a secondary dependence on the relative abundance of alpha elements (which are predominantly synthesized in massive stars), that is insensitive to the subgrid models for feedback. Hence, our conclusions are directly relevant for the origin of the mass–metallicity relation and metallicity gradients. Applying the relation between recycling and metallicity to the observed mass–metallicity relation yields our best estimate of the mass-dependent contribution of recycling. For centrals with a mass similar to that of the Milky Way, we infer the contributions of recycled stellar ejecta to the SFR and stellar mass to be 35 and 20 per cent, respectively

    First detection of HCO+ absorption in the magellanic system

    Get PDF
    We present the first detection of HCO+ absorption in the Magellanic System. Using the ATCA, we observed nine extragalactic radio continuum sources behind the Magellanic System and detected HCO+ absorption toward one source located behind the leading edge of the Magellanic Bridge. The detection is located at an LSR velocity of v 214.0 0.4 km s = -1 , with an FWHM of v 4.5 1.0 km s D = -1 , and an optical depth of t (HCO ) 0.10 0.0 = 2 + . Although there is abundant neutral hydrogen (H I) surrounding the sight line in position–velocity space, at the exact location of the absorber the H I column density is low, <10 cm 20 2 - , and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remain unclear, dynamical events such as H I flows and cloud collisions in this interacting system likely play an important role
    corecore