104 research outputs found

    Adolescent testosterone influences BDNF and TrkB mRNA and neurotrophin–interneuron marker relationships in mammalian frontal cortex

    Get PDF
    AbstractLate adolescence in males is a period of increased susceptibility for the onset of schizophrenia, coinciding with increased circulating testosterone. The cognitive deficits prevalent in schizophrenia may be related to unhealthy cortical interneurons, which are trophically dependent on brain derived neurotrophic factor. We investigated, under conditions of depleted (monkey and rat) and replaced (rat) testosterone over adolescence, changes in gene expression of cortical BDNF and TrkB transcripts and interneuron markers and the relationships between these mRNAs and circulating testosterone. Testosterone removal by gonadectomy reduced gene expression of some BDNF transcripts in monkey and rat frontal cortices and the BDNF mRNA reduction was prevented by testosterone replacement. In rat, testosterone replacement increased the potential for classical TrkB signalling by increasing the full length to truncated TrkB mRNA ratio, whereas in the monkey cortex, circulating testosterone was negatively correlated with the TrkB full length/truncated mRNA ratio. We did not identify changes in interneuron gene expression in monkey frontal cortex in response to gonadectomy, and in rat, we showed that only somatostatin mRNA was decreased by gonadectomy but not restored by testosterone replacement. We identified complex and possibly species-specific, relationships between BDNF/TrkB gene expression and interneuron marker gene expression that appear to be dependent on the presence of testosterone at adolescence in rat and monkey frontal cortices. Taken together, our findings suggest there are dynamic relationships between BDNF/TrkB and interneuron markers that are dependent on the presence of testosterone but that this may not be a straightforward increase in testosterone leading to changes in BDNF/TrkB that contributes to interneuron health

    Increased levels of a pro-inflammatory IgG receptor in the midbrain of people with schizophrenia

    Get PDF
    Background: There is growing evidence that neuroinflammation may contribute to schizophrenia neuropathology. Elevated pro-inflammatory cytokines are evident in the midbrain from schizophrenia subjects, findings that are driven by a subgroup of patients, characterised as a “high inflammation” biotype. Cytokines trigger the release of antibodies, of which immunoglobulin G (IgG) is the most common. The level and function of IgG is regulated by its transporter (FcGRT) and by pro-inflammatory IgG receptors (including FcGR3A) in balance with the anti-inflammatory IgG receptor FcGR2B. Testing whether abnormalities in IgG activity contribute to the neuroinflammatory abnormalities schizophrenia patients, particularly those with elevated cytokines, may help identify novel treatment targets. Methods: Post-mortem midbrain tissue from healthy controls and schizophrenia cases (n = 58 total) was used to determine the localisation and abundance of IgG and IgG transporters and receptors in the midbrain of healthy controls and schizophrenia patients. Protein levels of IgG and FcGRT were quantified using western blot, and gene transcript levels of FcGRT, FcGR3A and FcGR2B were assessed using qPCR. The distribution of IgG in the midbrain was assessed using immunohistochemistry and immunofluorescence. Results were compared between diagnostic (schizophrenia vs control) and inflammatory (high vs low inflammation) groups. Results: We found that IgG and FcGRT protein abundance (relative to β-actin) was unchanged in people with schizophrenia compared with controls irrespective of inflammatory subtype. In contrast, FcGRT and FcGR3A mRNA levels were elevated in the midbrain from “high inflammation” schizophrenia cases (FcGRT; p = 0.02, FcGR3A; p < 0.0001) in comparison to low-inflammation patients and healthy controls, while FcGR2B mRNA levels were unchanged. IgG immunoreactivity was evident in the midbrain, and approximately 24% of all individuals (control subjects and schizophrenia cases) showed diffusion of IgG from blood vessels into the brain. However, the intensity and distribution of IgG was comparable across schizophrenia cases and control subjects. Conclusion: These findings suggest that an increase in the pro-inflammatory Fcγ receptor FcGR3A, rather than an overall increase in IgG levels, contribute to midbrain neuroinflammation in schizophrenia patients. However, more precise information about IgG-Fcγ receptor interactions is needed to determine their potential role in schizophrenia neuropathology

    The effect of adolescent testosterone on hippocampal BDNF and TrkB mRNA expression: relationship with cell proliferation

    Get PDF
    Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone's action on postnatal neurogenesis involves changes in BDNF/TrkB levels. First, (1) we sought to localize the site of synthesis of the full length and truncated TrkB receptor in the neurogenic regions of the adolescent rhesus macaque hippocampus. Next, (2) we asked if gonadectomy or sex hormone replacement altered hippocampal BDNF and TrkB expression level in mammalian hippocampus (rhesus macaque and Sprague Dawley rat), and (3) if the relationship between BDNF/TrkB expression was altered depending on the sex steroid environment. Results: We find that truncated TrkB mRNA+ cells are highly abundant in the proliferative subgranular zone (SGZ) of the primate hippocampus; in addition, there are scant and scattered full length TrkB mRNA+ cells in this region. Gonadectomy or sex steroid replacement did not alter BDNF or TrkB mRNA levels in young adult male rat or rhesus macaque hippocampus. In the monkey and rat, we find a positive correlation with cell proliferation and TrkB-TK+ mRNA expression, and this positive relationship was found only when sex steroids were present. Conclusions: We suggest that testosterone does not down-regulate neurogenesis at adolescence via overall changes in BDNF or TrkB expression. However, BDNF/TrkB mRNA appears to have a greater link to cell proliferation in the presence of circulating testosterone

    Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats

    Get PDF
    BACKGROUND: Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG) neurons projecting to pelvic viscera (L1, L2, L6, S1) of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. RESULTS: In studies of isolated DRG neurons in short-term (overnight) culture, we found that estradiol and estrogen receptor (ER) agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy) showed a parallel increase in total and phosphorylated p38 (relative to beta-tubulin). We also observed an increase in ERK1 phosphorylation (relative to total ERK1), but no change in ERK1 expression (relative to beta-tubulin). We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1), cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38 protein levels, relative to beta-tubulin. Prior ovariectomy did not alter the response to inflammation. CONCLUSIONS: These results provide new insights into the complex effects of estrogens on bladder nociceptor signalling. The diversity of estrogen actions in these ganglia raises the possibility of developing new ways to modulate their function in pelvic hyperactivity or pain states

    Social status strategy in early adolescent girls: Testosterone and value-based decision making

    Full text link
    There has been strong interest, spanning several disciplines, in understanding adolescence as a developmental period of increased risk-taking behavior. Our goals focus on one line of investigation within this larger developmental risk framework. Specifically, we examined levels of pubertal hormones in girls in relation to their willingness to take greater financial risks to gain social status. To this end, we tested the hypothesis that higher levels of testosterone during the ages of pubertal maturation are associated with a greater willingness to sacrifice money for social admiration. Sixty-three girls ages 10-14 (Mage=12.74) participated in laboratory measures and completed at-home saliva sample collection. The Pubertal Development Scale (PDS) and basal hormone levels (testosterone, estradiol, DHEA) measured pubertal maturation. We made use of a developmentally appropriate version of an Auction Task in which adolescents could take financial risks in order to gain socially motivated outcomes (social status). PDS and testosterone were each associated with overall levels of financial risk taking over the course of the Auction Task. In hierarchical models, PDS and testosterone were predictors of the slope of overbidding over the course of the task. Results provide evidence for the role of testosterone and pubertal maturation in girls' motivations to engage in costly decision making in order to gain social status. Findings contribute to our understanding of the developmental underpinnings of some interesting aspects of adolescent risk behavior

    Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain

    Full text link
    Rationale: Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. Objectives: In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Results and conclusions: Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness. © 2014 The Author(s)

    Estrogen receptors: Mechanism of action and relevance to schizophrenia

    Full text link
    Background: Sex differences are observed in schizophrenia, with women exhibiting an overall better disease outcome, leading to the estrogen hypothesis of schizophrenia that postulates a protective role of estrogen against the development and severity of the disorder. Estrogen (17β-estradiol) is a sex steroid hormone; its primary mechanism of action is via binding to estrogen receptors and initiating gene expression. While there has been significant attention placed on the impact of estrogen in schizophrenia, less is known about the importance of estrogen receptors in schizophrenia. Description: This narrative review describes estrogen receptor subtypes including the distribution of these receptors in the brain, with a particular focus on the two main subtypes: estrogen receptoralpha (ERα, or ESR1) and-beta (ERβ, or ESR2). A highlight of this review is the description of previous research about estrogen receptors in schizophrenia. Given that this literature is limited, particularly with respect to ERβ, we argued for a more considered effort for future studies to further understand the role of estrogen and its receptors in schizophrenia and to further elucidate the mechanisms underlying the therapeutic effect of estrogen and estrogen receptor modulation in schizophrenia. Such an effort may lead to more targeted novel therapeutic approaches as well as enhance our understanding of the sex differences observed in schizophrenia and other psychiatric disorders

    Considering the role of adolescent sex steroids in schizophrenia

    Full text link
    Schizophrenia is a disabling illness that is typically first diagnosed during late adolescence to early adulthood. It has an unremitting course and is often treatment-resistant. Many clinical aspects of the illness suggest that sex steroid-nervous system interactions may contribute to the onset, course of symptoms and the cognitive impairment displayed by men and women with schizophrenia. Here, we discuss the actions of oestrogen and testosterone on the brain during adolescent development and in schizophrenia from the perspective of experimental studies in animals, human post-mortem studies, magnetic resonance imaging studies in living humans and clinical trials of sex steroid-based treatments. We present evidence of potential beneficial, as well as detrimental, effects of both testosterone and oestrogen. We provide a rationale for the necessity to further elucidate sex steroid mechanisms of action at different ages, sexes and brain regions to more fully understand the role of testosterone and oestrogen in the pathophysiology of schizophrenia. The weight of the evidence suggests that sex steroid hormones influence mammalian brain function, including both cognition and emotion, and that pharmaceutical agents aimed at sex steroid receptors appear to provide a novel treatment avenue to reduce symptoms and improve cognition in men and women with schizophrenia

    Reductions in midbrain GABAergic and dopamine neuron markers are linked in schizophrenia

    Full text link
    Reductions in the GABAergic neurotransmitter system exist across multiple brain regions in schizophrenia and encompass both pre- and postsynaptic components. While reduced midbrain GABAergic inhibitory neurotransmission may contribute to the hyperdopaminergia thought to underpin psychosis in schizophrenia, molecular changes consistent with this have not been reported. We hypothesised that reduced GABA-related molecular markers would be found in the midbrain of people with schizophrenia and that these would correlate with dopaminergic molecular changes. We hypothesised that downregulation of inhibitory neuron markers would be exacerbated in schizophrenia cases with high levels of neuroinflammation. Eight GABAergic-related transcripts were measured with quantitative PCR, and glutamate decarboxylase (GAD) 65/67 and GABAA alpha 3 (α3) (GABRA3) protein were measured with immunoblotting, in post-mortem midbrain (28/28 and 28/26 control/schizophrenia cases for mRNA and protein, respectively), and analysed by both diagnosis and inflammatory subgroups (as previously defined by higher levels of four pro-inflammatory cytokine transcripts). We found reductions (21 – 44%) in mRNA encoding both presynaptic and postsynaptic proteins, vesicular GABA transporter (VGAT), GAD1, and parvalbumin (PV) mRNAs and four alpha subunits (α1, α2, α3, α5) of the GABAA receptor in people with schizophrenia compared to controls (p 0.05). Expression of transcripts for GABAA receptor alpha subunits 2 and 3 (GABRA2, GABRA3) were positively correlated with tyrosine hydroxylase (TH) and dopamine transporter (DAT) transcripts in schizophrenia cases (GABRA2; r > 0.630, GABRA3; r > 0.762, all p 0.05). Taken together, our results support a profound disruption to inhibitory neurotransmission in the substantia nigra regardless of inflammatory status, which provides a potential mechanism for disinhibition of nigrostriatal dopamine neurotransmission
    corecore