2 research outputs found

    A search for ionized jets towards massive young stellar objects

    Get PDF
    Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and H II regions. Of these, 26 sources are classified as ionized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as H II regions and 2 were unable to be categorized. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically thin lobes resulting from shocks either internal to the jet and/or at working surfaces. 10 jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of ? =-0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporatingmagnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper limit on the jet phase lasting approximately 6.5×104 yr. Typical mass-loss rates in the jet are found to be 1.4× 10-5M? yr-1 with associated momentum rates of the order of (1-2) × 10-2M? km s-1 yr-1. © 2016 The Authors. Published by Oxford University Press on behalf of The Royal Astronomical Society

    A snapshot of the oldest active galactic nuclei feedback phases

    Get PDF
    Active galactic nuclei inject large amounts of energy into their host galaxies and surrounding environment, shaping their properties and evolution1,2. In particular, active-galactic-nuclei jets inflate cosmic-ray lobes, which can rise buoyantly as light ‘bubbles’ in the surrounding medium3, displacing and heating the encountered thermal gas and thus halting its spontaneous cooling. These bubbles have been identified in a wide range of systems4,5. However, due to the short synchrotron lifetime of electrons, the most advanced phases of their evolution have remained observationally unconstrained, preventing us from fully understand their coupling with the external medium, and thus active galactic nuclei feedback. Simple subsonic hydrodynamic models6,7 predict that the pressure gradients, naturally present around the buoyantly rising bubbles, transform them into toroidal structures, resembling mushroom clouds in a stratified atmosphere. The way and timescales on which these tori will eventually disrupt depend on various factors including magnetic fields and plasma viscosity8,9. Here we report observations below 200 MHz, sensitive to the oldest radio-emitting particles, showing the late evolution of multiple generations of cosmic-ray active-galactic-nuclei bubbles in a galaxy group with unprecedented level of detail. The bubbles’ buoyancy power can efficiently offset the radiative cooling of the intragroup medium. However, the bubbles still have not thoroughly mixed with the thermal gas, after hundreds of million years, probably under the action of magnetic fields
    corecore