132 research outputs found

    Convective scale weather analysis and forecasting

    Get PDF
    How satellite data can be used to improve insight into the mesoscale behavior of the atmosphere is demonstrated with emphasis on the GOES-VAS sounding and image data. This geostationary satellite has the unique ability to observe frequently the atmosphere (sounders) and its cloud cover (visible and infrared) from the synoptic scale down to the cloud scale. These uniformly calibrated data sets can be combined with conventional data to reveal many of the features important in mesoscale weather development and evolution

    Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    Get PDF
    The use of rapid scan satellite imagery to investigate the local environment of severe thunderstorms is discussed. Mesoscale cloud tracking and vertical wind shear as it affects thunderstorm relative flow are mentioned. The role of pre-existing low level cloud cover in the outbreak of tornadoes was investigated. Applying visible atmospheric sounding imagery to mesoscale phenomena is also addressed

    Mesoscale analysis by numerical modeling coupled with satellite-based sounding

    Get PDF
    November 1988.Principal investigators: Thomas H. Vonder Haar, James F.W. Purdom.Includes bibliographical references.This dissertation deals with the development of a system for time-continuous mesoscale analysis and its use in studying the mesoscale distribution of summertime convective cloud development in the Northeastern Colorado region. There were two basic components of the system — a version of the CSU Regional Atmospheric Modeling System (RAMS) and an algorithm for retrieving temperatures and water vapor concentrations from VISSR Atmospheric Sounder (VAS) data. The system was designed to avoid some of the problems that researchers have encountered when satellite-retrieved parameters have been input to models. The primary distinguishing feature of the new method is that there is an intimate coupling of the retrieval and modeling processes. Water vapor concentrations and ground surface temperatures were the foci of the analyses. In preparation for analysis experiments we tested the sensitivity of a two-dimensional version of the model to various controls on the behavior of water vapor concentrations and surface temperatures. For water vapor mixing ratios, variations that might be caused by analysis errors had very little impact on the dynamics of circulations in the pre-convective stage. In contrast, ground surface temperature variations were shown to have a large impact on circulations, so analysis errors are very relevant to pre-convective dynamics. The first comparisons of the coupled analysis method with other, related, methods was by means of two-dimensional simulations. Analyses in which surface temperatures were derived from satellite-retrievals were compared with the alternative of relying on energy balance computations. The energy balance computations were so sensitive to soil characteristics, which were simulated as unknown, that the satellite retrieval method gave better results even with cloud contamination. In water vapor analysis comparisons no single method was superior in every respect, but the coupled method performed relatively well. Vertical gradients and horizontal gradients were well represented, and the method was relatively insensitive to a common problem in pre-convective analysis — contamination of satellite data by increasing amounts of small convective clouds. Analysis methods were further compared in a three-dimensional case study for 21 August 1983. The horizontal and time variations of satellite-retrieved surface temperatures closely corresponded to the conventional shelter temperature observations, but had much greater detail. In contrast, the energy balance-based temperatures tended to increase too quickly during the morning and lacked some of the observed gradients. According to the retrievals, there can be very large mesoscale gradients in temperatures at the ground surface even on the relatively flat plains. In the case study water vapor analyses there were substantial differences among the results of the several methods that were intercompared. The study demonstrated that, when the first set of satellite data is less reliable than the later sets, some of the contamination lingers throughout the time-continuous coupled analysis results. However, the coupled method generally appeared to be the most valuable of the methods considered in this study because it exploited the major strengths of the numerical model and the satellite data while making it relatively easy to recognize any impacts of their weaknesses. The results of this dissertation support the hypothesis that both ground surface temperatures and terrain variations can play important roles in pre-convective water vapor kinematics through their influences on vertical and horizontal winds. The development of convective clouds corresponded largely, but not exclusively, with convergence and deepening of low-level water vapor. The analysis system proved to be valuable for forecasting through the close correspondence between derived stability indices and later convective development. The new method is a step in the expanding capability of meteorologists to combine tools and sources of data for understanding and forecasting mesoscale phenomena.Research supported by National Oceanic and Atmospheric Administration Grant NA-85-RAH-05045 (53-1209) and in part by Army Research Office Center for Geosciences, Grant DALL-03-86-K-9175

    Satellite data support to the PRE-STORM operations center, May-June 1985

    Get PDF
    September 1985.Includes bibliographical references.The activities of CIRA are described with regard to satellite support of the field phase of the Oklahoma-Kansas PRE-STORM experiment, and to the ongoing research projects which make use of PRE-STORM data sets. Routine GOES imagery and VAS products were displayed on a personal computer (PC) workstation located in the PRE-STORM operations support facility. Half-hourly visible and infrared imagery, two-hourly water vapor imagery, and a number of derived VAS sounding products were available in real-time. The impact of the PC workstation on PRESTORM operations is discussed. The image display and analysis products, and VAS data products for use on the PC workstation are described in detail. Finally, PC data archival procedures and preliminary plans for future research are presented.This Report was supported under NOAA Grants - #NA84AA-D-00017 - Mesoscale Analysis and Forecast Product Development for Severe Storm Nowcasting and #NA84AA-H-00020 - Research and Development Activities in Support of the NOAA Operational VAS Assessment (NOVA) Program

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal

    Unifying Gene Expression Measures from Multiple Platforms Using Factor Analysis

    Get PDF
    In the Cancer Genome Atlas (TCGA) project, gene expression of the same set of samples is measured multiple times on different microarray platforms. There are two main advantages to combining these measurements. First, we have the opportunity to obtain a more precise and accurate estimate of expression levels than using the individual platforms alone. Second, the combined measure simplifies downstream analysis by eliminating the need to work with three sets of expression measures and to consolidate results from the three platforms

    Exon-Specific QTLs Skew the Inferred Distribution of Expression QTLs Detected Using Gene Expression Array Data

    Get PDF
    Mapping of expression quantitative trait loci (eQTLs) is an important technique for studying how genetic variation affects gene regulation in natural populations. In a previous study using Illumina expression data from human lymphoblastoid cell lines, we reported that cis-eQTLs are especially enriched around transcription start sites (TSSs) and immediately upstream of transcription end sites (TESs). In this paper, we revisit the distribution of eQTLs using additional data from Affymetrix exon arrays and from RNA sequencing. We confirm that most eQTLs lie close to the target genes; that transcribed regions are generally enriched for eQTLs; that eQTLs are more abundant in exons than introns; and that the peak density of eQTLs occurs at the TSS. However, we find that the intriguing TES peak is greatly reduced or absent in the Affymetrix and RNA-seq data. Instead our data suggest that the TES peak observed in the Illumina data is mainly due to exon-specific QTLs that affect 3′ untranslated regions, where most of the Illumina probes are positioned. Nonetheless, we do observe an overall enrichment of eQTLs in exons versus introns in all three data sets, consistent with an important role for exonic sequences in gene regulation

    Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes

    Get PDF
    SummarySomatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC−/− background. XPC−/− cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk
    • …
    corecore