16 research outputs found

    Time- and angle-resolved photoemission spectroscopy on bidimensional semiconductors with a 500 kHz extreme ultraviolet light source

    Get PDF
    This thesis describe the developement of a high-repetion rate time- and angle-resolved photoemission experimental setup. First, the work describes the light source developed for the experiment, based on ultrafast Ytterbium lasers and optical paramentric chirped pulse amplification. In the second part the light source is frequency upconverted to the extreme-ultravioled using the process high-harmonic generation. Finally, the experimental setup is described and applied to studies of ultrafast carrier dynamics in the 2D semiconductor tungsten diselenide

    Sodium iodide symporter (NIS) in extrathyroidal malignancies: Focus on breast and urological cancer

    Get PDF
    BACKGROUND: Expression and function of sodium iodide symporter (NIS) is requisite for efficient iodide transport in thyrocytes, and its presence in cancer cells allows the use of radioiodine as a diagnostic and therapeutic tool in thyroid neoplasia. Discovery of NIS expression in extrathyroidal tissues, including transformed cells, has opened a novel field of research regarding NIS-expressing extrathyroidal neoplasia. Indeed, expression of NIS may be used as a biomarker for diagnostic, prognostic, and therapeutic purposes. Moreover, stimulation of endogenous NIS expression may permit the radioiodine treatment of extrathyroidal lesions by concentrating this radioisotope. RESULTS: This review describes recent findings in NIS research in extrathyroidal malignancies, focusing on breast and urological cancer, emphasizing the most relevant developments that may have clinical impact. CONCLUSIONS: Given the recent progress in the study of NIS regulation as molecular basis for new therapeutic approaches in extrathyroidal cancers, particular attention is given to studies regarding the relationship between NIS and clinical-pathological aspects of the tumors and the regulation of NIS expression in the experimental models

    Tunable sub-20 fs pulses from a 500 kHz OPCPA with 15 W average power based on an all-ytterbium laser

    Get PDF
    An optical parametric chirped pulse amplifier fully based on Yb lasers at 500 kHz is described. Passive optical-synchronization is achieved between a fiber laser-pumped white-light and a 515 nm pump produced with a 200 W picosecond Yb:YAG InnoSlab amplifier. An output power up to 19.7 W with long-term stability of 0.3% is demonstrated for wavelength tunable pulses between 680 nm and 900 nm and spectral stability of 0.2%; 16.5 W can be achieved with a bandwidth supporting 5.4 fs pulses. We demonstrate compression of 30 microjoule pulses to sub-20 fs duration with a prism compressor, suitable for high harmonic generation.Comment: 4 pages, 4 figure

    Atomic-Level Description of Thermal Fluctuations in Inorganic Lead Halide Perovskites

    Get PDF
    A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures

    Excited-state band structure mapping

    Get PDF
    [EN] Angle-resolved photoelectron spectroscopy is an extremely powerful probe of materials to access the occupied electronic structure with energy and momentum resolution. However, it remains blind to those dynamic states above the Fermi level that determine technologically relevant transport properties. In this work we extend band structure mapping into the unoccupied states and across the entire Brillouin zone by using a state-of-the-art high repetition rate, extreme ultraviolet femtosecond light source to probe optically excited samples. The wideranging applicability and power of this approach are demonstrated by measurements on the two-dimensional semiconductor WSe2, where the energy-momentum dispersion of valence and conduction bands are observed in a single experiment. This provides a direct momentum-resolved view, not only on the complete out-of-equilibrium band gap but also on its renormalization induced by electronic screening. Our work establishes a benchmark for measuring the band structure of materials, with direct access to the energy-momentum dispersion of the excited-state spectral function.A This work was funded by the Max-Planck-Gesellschaft, by the German Research Foundation (DFG) , within the Emmy Noether Program (Grant No. RE 3977/1) , and Grants No. FOR1700 (Project E5) , No. SPP2244 (Project No. 443366970) , and from the European Research Council, Grant ERC-2015-CoG-682843. M.P. acknowledges financial support from the Swiss National Science Foundation (SNSF) through Grant No. CRSK-2_196756. C.W.N. and C.M. ac-knowledge financial support by Swiss National Science Foundation (SNSF) Grant No. P00P2_170597. A.R. and H.H. acknowledge financial support from the European Research Council (Grant No. ERC-2015-AdG-694097) and the Cluster of Excellence "CUI: Advanced Imaging of Matter" of the Deutsche Forschungsgemeinschaft (Grant EXC 2056, Project No. 390715994)

    Quantifying Photoinduced Polaronic Distortions in Inorganic Lead Halide Perovskites Nanocrystals

    Full text link
    The development of next generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K-edge and Pb L3-edge X-ray absorption with refined ab-initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.Comment: Main: 27 pages, 4 figures SI: 16 pages, 8 figure

    Ultrafast Charge Transfer Pathways Through A Prototype Amino-Carboxylic Molecular Junction

    No full text
    Charge transport properties of a vertically stacked organic heterojunction based on the amino-carboxylic (A-C) hydrogen bond coupling scheme are investigated by means of X-ray resonant photoemission and the core-hole clock method. We demonstrate that hydrogen bonding in molecular bilayers of benzoic acid/cysteamine (BA/CA) with an A-C coupling scheme opens a site selective pathway for ultrafast charge transport through the junction. Whereas charge transport from single BA layer directly coupled to the Au(111) is very fast and it is mediated by the phenyl group, the interposition of an anchoring layer of CA selectively hinders the delocalization of electrons from the BA phenyl group but opens a fast charge delocalization route through the BA orbitals close to the A-C bond. This evidences that hydrogen bonding established upon A-C recognition can be exploited to spatially/orbitally manipulate the charge transport properties of heteromolecular junctions

    Nanoscale-Resolved Surface-to-Bulk Electron Transport in CsPbBr3 Perovskite

    No full text
    Describing the nanoscale charge carrier transport at surfaces and interfaces is fundamental for designing high-performance optoelectronic devices. To achieve this, we employ time- and angle-resolved photoelectron spectroscopy with ultraviolet pump and extreme ultraviolet probe pulses. The resulting high surface sensitivity reveals an ultrafast carrier population decay associated with surface-to-bulk transport, which was tracked with a sub-nanometer spatial resolution normal to the surface, and on a femtosecond time scale, in the case of the inorganic CsPbBr3 lead halide perovskite. The decay time exhibits a pronounced carrier density dependence, which is attributed via modeling to enhanced diffusive transport and concurrent recombination. The transport is found to approach an ordinary diffusive regime, limited by electron-hole scattering, at the highest excitation fluences. This approach constitutes an important milestone in our capability to probe hot-carrier transport at solid interfaces with sub-nanometer resolution in a theoretically and experimentally challenging, yet technologically relevant, high-carrier-density regime.ISSN:1530-6984ISSN:1530-699
    corecore