11 research outputs found

    Characteristics of Different Systems for the Solar Drying of Crops

    Get PDF
    Solar dryers are used to enable the preservation of agricultural crops, food processing industries for dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of complex interactions particular between the intensity and duration of solar energy, the prevailing ambient relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the design and operation of the solar dryer

    A Comparison of the Environmental Impact of Solar Power Generation Using Multicrystalline Silicon and Thin Film of Amorphous Silicon Solar Cells: Case Study in Thailand

    No full text
    This paper studies the environmental impact of two different forms of solar power generation in Thailand – that of multicrystalline silicon solar cells, and that of thin film amorphous silicon solar cells. It takes as its study two of the largest solar cell power plants of their kind in Thailand; a multicrystalline silicon plant in the north (generating 90 MW) and a thin film amorphous silicon plant in the centre (generating 55 MW). The Life Cycle Assessment tool (LCA) was used to assess the environmental impact of each stage of the process, from the manufacture of the cells, through to their transportation, installation and eventual recycling. The functional unit of the study was the generation of 1 kWh of power transmitted and distributed by the Electricity Generating Authority of Thailand (EGAT) and Provincial Electricity Authority (PEA). The environmental impact results were calculated in terms of eco-points (Pt) per functional unit of 1 kWh. The characterised data for 1 kWh of solar power generation was then compared with data for 1 kWh of combined cycle and thermal power generation (both in Thailand), using the same set of characterisation factors. After analyzing the results, both forms of solar power energy generation were found to impact upon the studied categories of Human Health, Ecosystem Quality and Resource Depletion, whilst also highlighting the importance of the solar cell module recycling process in decreasing the overall environmental impact. When the two solar cell technologies were compared, the overall impact of the multicrystalline silicon solar cell was found to be higher than that of the thin film amorphous silicon solar cell. Furthermore, when assessing the overall impact against non-renewable power generating technologies such as combined cycle and thermal power generation, the thin film amorphous silicon solar cells were found to have the lowest environmental impact of all technologies studied

    Phase Change Material Coating on Autoclaved Aerated Lightweight Concrete for Cooling Load Reduction

    No full text
    This work is focused on enhancing the thermal effectiveness of autoclaved aerated concrete (AAC) by the application of phase change material (PCM) as a coating. The dynamics of heat transfer and the cooling load of air conditioning system in the two tested houses with different wall materials (AAC and AAC with PCM coating) were investigated. The work demonstrated that by coating phase change material onto the exterior surface of the building materials a significant increase in the thermal effectiveness of the building materials was achieved and determined by comparing the lower interior surface temperature, heat flux evolution and room temperature. The increase in thermal effectiveness was applied to the AAC. It was demonstrated that the cooling load and power consumption of air conditioning system in buildings using the wall-PCM coating combination can be reduced variously by about 25 %

    Development and Characterization of Composite Desiccant Impregnated with LiCl for Thermoelectric Dehumidifier (TED)

    No full text
    Aqueous salt solutions (LiCl) were impregnated into a porous host matrix to create composite desiccant materials (silica gel). The authors of this paper fabricated and analyzed composite desiccant-coated aluminum sheets (DCAS) with varying LiCl mass concentrations. Nitrogen sorption results revealed that the Brunauer–Emmett–Teller (BET) surface area and pore volume of the composite desiccant-coated aluminum sheets decreased. Furthermore, composite DCAS had lower nitrogen sorption than silica-gel-coated aluminum sheets (SGCAS). According to the results, the composite DCAS had the highest thermal conductivity, measuring 6.1 Wm−1 K−1, doubling that of the SGCAS. For evaluating sorption kinetics, the linear driving force model (LDF) was used, and composite DCAS showed greater dynamic sorption quantities and sorption rate coefficients than SGCAS. Furthermore, three different moisture sorption isotherm models were used to fit the experimental results: the Brunauer–Emmett–Teller (BET) model, the Guggenheim–Anderson–Boer (GAB) model, and the double log polynomial (DLP) model. The DLP model was shown to be the best model for predicting the moisture sorption isotherms of DCAS. Additionally, the composite desiccant-coated heat sink (DCHS) of the thermoelectric dehumidifier (TED) was evaluated and compared to silica gel in terms of dehumidification capacity. According to the findings, the outlet air humidity ratio of the composite DCHS reached a minimum of 10.23 g kg−1, and the dehumidification capacity was 0.117 kg h−1 when the input electrical voltage was kept at 9 V

    āļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļŠāļīāļ‡āđ€āļ—āļ„āļ™āļīāļ„āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļĢāđˆāļ§āļĄāļāļąāļšāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ›āļĢāļąāļšāļ­āļēāļāļēāļĻāļ āļēāļĒāđƒāļ™āļ­āļēāļ„āļēāļĢTechnical Analysis of Cold Storage System with Phase Change Material for Air Conditioning on Building

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļ—āļģāļ‡āļēāļ™āđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ”āđ‰āļ§āļĒāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ›āļĢāļąāļšāļ­āļēāļāļēāļĻ āđ‚āļ”āļĒāļ™āļģāļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ—āļģāļ‡āļēāļ™āļĢāđˆāļ§āļĄāļāļąāļšāļĢāļ°āļšāļšāļ—āļģāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ‚āļ™āļēāļ” 11,601 āļšāļĩāļ—āļĩāļĒāļđāļ•āđˆāļ­āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ—āļĩāđˆāļ„āļ§āļēāļĄāļ–āļĩāđˆāđ„āļŸāļŸāđ‰āļē 50 āđ€āļŪāļīāļĢāļ•āļ‹āđŒ āđƒāļ™āļŦāđ‰āļ­āļ‡āļ›āļāļīāļšāļąāļ•āļīāļāļēāļĢāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļĄāļēāļ•āļĢāļāļēāļ™ ISO 17025 āļšāļĢāļīāļĐāļąāļ— āļšāļīāļ—āđ„āļ§āđ‰āļŠāđŒ (āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ) āļˆāļģāļāļąāļ” āđ€āļžāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļš āļˆāļēāļāļœāļĨāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļžāļšāļ§āđˆāļēāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ›āļĢāļ°āļˆāļļāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ āđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāđ€āļ‰āļĨāļĩāđˆāļĒ 45 āļ™āļēāļ—āļĩ āļŠāļēāļĄāļēāļĢāļ–āļ—āļģāđƒāļŦāđ‰āļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āđ€āļĒāđ‡āļ™āļ•āļąāļ§āļĨāļ‡āđ„āļ”āđ‰āļ­āļļāļ“āļŦāļ āļđāļĄāļī -3.42 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ„āļēāļĒāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ āđ‚āļ”āļĒāļ„āļ§āļšāļ„āļļāļĄāļ­āļēāļāļēāļĻāļ—āļĩāđˆāđ„āļŦāļĨāļœāđˆāļēāļ™āđƒāļŦāđ‰āļĄāļĩāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ­āļĒāļđāđˆāļ—āļĩāđˆ 30 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĨāļĄāđ€āļ‰āļĨāļĩāđˆāļĒ 2.30 āđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ§āļīāļ™āļēāļ—āļĩ āļžāļšāļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ­āļēāļāļēāļĻāļĨāļ‡āđ„āļ”āđ‰āļŠāļđāļ‡āļŠāļļāļ” 10.37 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļ„āđˆāļēāđ€āļ‰āļĨāļĩāđˆāļĒāļœāļĨāļ•āđˆāļēāļ‡āļ›āļĢāļ°āļĄāļēāļ“ 3.90 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āļ‹āļķāđˆāļ‡āļĢāļ°āļšāļšāļˆāļ°āļŦāļĒāļļāļ”āļ„āļēāļĒāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ āđ€āļĄāļ·āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āđ€āļ—āđˆāļēāļāļąāļš 30 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ āđ‚āļ”āļĒāđƒāļŠāđ‰āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ›āļĢāļ°āļĄāļēāļ“ 30 āļ™āļēāļ—āļĩ āđāļĨāļ°āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ­āļĒāļđāđˆāļ—āļĩāđˆāļĢāđ‰āļ­āļĒāļĨāļ° 67.91 āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļ›āļĢāļīāļĄāļēāļ“āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ€āļ‰āļĨāļĩāđˆāļĒ 2,910.12 āļšāļĩāļ—āļĩāļĒāļđāļ•āđˆāļ­āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļĢāđˆāļ§āļĄāļāļąāļšāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ­āļēāļāļēāļĻāļ āļēāļĒāđƒāļ™āļāļĢāļ­āļšāļ­āļēāļ„āļēāļĢāļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāđ„āļ”āđ‰ āđāļĨāļ°āļˆāļ°āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ„āļ›āđ„āļ”āđ‰āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļĢāđˆāļ§āļĄāļāļąāļšāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āđ‚āļ”āļĒāđƒāļŠāđ‰āđāļŦāļĨāđˆāļ‡āļžāļĨāļąāļ‡āļ‡āļēāļ™āļāļēāļĢāļĢāļ°āļšāļšāđ€āļ‹āļĨāļĨāđŒāđāļŠāļ‡āļ­āļēāļ—āļīāļ•āļĒāđŒāđāļšāļšāļœāļŠāļĄāļœāļŠāļēāļ™āđ„āļ”āđ‰āđƒāļ™āļ­āļ™āļēāļ„āļ•The objective of this study was to investigate the efficiency of the basic performance of cold storage system using phase change material (PCM-CSS) for air conditioning. The cold storage system working with the refrigerator system of 11,601 Btu/hr. at an electrical frequency of 50 Hz was tested in a laboratory certified by ISO 17025, Bitwise (Thailand) Co., Ltd. The results showed that the cooling charging process of the cold storage unit at an average of 45 min for the phase change material (PCM) to cool down to the temperature of –3.42°C. The cold discharging process of PCM-CSS was tested by controlling the airflow at the temperature of 30°C and at the average wind speed of 2.30 m/s. It was found that the reduction of the air temperature was at the maximum of 10.37°C with the average difference of 3.90°C. The discharging process would stop when the temperature of PCM was 30°C which took around 30 minutes. This revealed that the cold storage efficiency was 67.91% and the average energy of 2,910.12 Btu/hr Therefore, the PCM-CSS can be used for air conditioning in building with lightweight concrete walls. There is a possibility to study the efficiency of cold storage system and phase change materials using the photovoltaic hybrid system in the future

    āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āđƒāļ™āļ­āļēāļ„āļēāļĢāđāļšāļšāļ„āļ­āļ™āļāļĢāļĩāļ•āļĄāļ§āļĨāđ€āļšāļēāļĢāđˆāļ§āļĄāļāļąāļšāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°Cooling Storage System in Lightweight Concrete Building with Phase Change Material

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāđāļ™āļ§āļ„āļīāļ”āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ­āļ­āļāđāļšāļšāļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ”āđ‰āļ§āļĒāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āđ‚āļ”āļĒāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāđāļœāļ‡āđ€āļ‹āļĨāļĨāđŒāđāļŠāļ‡āļ­āļēāļ—āļīāļ•āļĒāđŒ (āļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļąāļšāļ­āļēāļāļēāļĻāđƒāļ™āļšāđ‰āļēāļ™āļ—āļĩāđˆāļ­āļĒāļđāđˆāļ­āļēāļĻāļąāļĒāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ›āļĢāļąāļšāļ­āļēāļāļēāļĻāđƒāļ™āļŠāđˆāļ§āļ‡āđ€āļ§āļĨāļēāļāļĨāļēāļ‡āļ„āļ·āļ™) āđ€āļžāļ·āđˆāļ­āđ€āļ›āđ‡āļ™āđāļ™āļ§āļ—āļēāļ‡āđƒāļ™āļāļēāļĢāļžāļąāļ’āļ™āļē āļ›āļĢāļąāļšāļ›āļĢāļļāļ‡ āđāļĨāļ°āđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āđƒāļ™āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļ­āļēāļ„āļēāļĢ āđ‚āļ”āļĒāļ—āļģāļāļēāļĢāļ—āļ”āļŠāļ­āļšāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ”āđ‰āļ§āļĒāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āļ›āļĢāļ°āđ€āļ āļ— āļžāļēāļĢāļēāļŸāļīāļ™ (āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāļĨāļ­āļĄāļĨāļ°āļĨāļēāļĒ 20 āļ­āļ‡āļĻāļēāđ€āļ‹āļĨāđ€āļ‹āļĩāļĒāļŠ) āđƒāļ™āļŠāđˆāļ§āļ‡āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ 5 āļāļĢāļ“āļĩ (āļ—āļĩāđˆāļ„āļ§āļēāļĄāļ–āļĩāđˆāļ„āļ­āļĄāđ€āļžāļĢāļŠāđ€āļ‹āļ­āļĢāđŒ 90 70 60 50 āđāļĨāļ° 40 āđ€āļŪāļīāļĢāļ•āļ‹āđŒ) āļžāļšāļ§āđˆāļēāļ„āļ§āļēāļĄāļ–āļĩāđˆāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļŠāļģāļŦāļĢāļąāļšāļŠāļēāļĢāđŒāļˆāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āđƒāļŦāđ‰āļāļąāļšāļŠāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļŠāļ–āļēāļ™āļ°āļ­āļĒāļđāđˆāļ—āļĩāđˆ 50 āđ€āļŪāļīāļĢāļ•āļ‹āđŒ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļŠāļĄāļĢāļĢāļ–āļ™āļ°āļāļēāļĢāļ—āļģāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ (COP) āđāļĨāļ°āļ­āļąāļ•āļĢāļēāļŠāđˆāļ§āļ™āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļžāļĨāļąāļ‡āļ‡āļēāļ™ (EER) āļ­āļĒāļđāđˆāļ—āļĩāđˆ 3.09 āđāļĨāļ° 10.53 (Btu/hr.)/W āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđƒāļ™āļāļēāļĢāļāļąāļāđ€āļāđ‡āļšāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāđ€āļ—āđˆāļēāļāļąāļš 7.03 āļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāļāļēāļĢāđ„āļŸāļŸāđ‰āļēāļŠāđˆāļ§āļ™āļ āļđāļĄāļīāļ āļēāļ„āđ€āļžāļĩāļĒāļ‡āļ­āļĒāđˆāļēāļ‡āđ€āļ”āļĩāļĒāļ§ āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļ­āļĒāļđāđˆāļ—āļĩāđˆ 6.11 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒāļŠāļąāđˆāļ§āđ‚āļĄāļ‡ (āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ—āļģāļ„āļ§āļēāļĄāđ€āļĒāđ‡āļ™ 8 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡) āđ‚āļ”āļĒāđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļĢāđˆāļ§āļĄāļāļąāļšāđāļœāļ‡āđ€āļ‹āļĨāļĨāđŒāđāļŠāļ‡āļ­āļēāļ—āļīāļ•āļĒāđŒ āļ—āļģāđƒāļŦāđ‰āļĢāļ°āļšāļšāļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļĨāļ”āļĨāļ‡ āļ­āļĒāļđāđˆāļ—āļĩāđˆāļ›āļĢāļ°āļĄāļēāļ“ 1.13 āļāļīāđ‚āļĨāļ§āļąāļ•āļ•āđŒāļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļŦāļĒāļąāļ”āđ€āļ—āđˆāļēāļāļąāļš 81.57 āļ‹āļķāđˆāļ‡āļŠāđˆāļ§āļ™āļ›āļĢāļ°āļāļ­āļšāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āđ„āļ”āđ‰āđāļāđˆ āļŠāļļāļ”āļ„āļ­āļĒāļĨāđŒāļĢāđ‰āļ­āļ™āļ āļēāļĒāļ™āļ­āļāļ­āļēāļ„āļēāļĢ āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļĢāđ‰āļ­āļĒāļĨāļ° 55The aim of this research is to study and design the Phase Change Material Cooling Storage System (PCM-CSS) by using Photovoltaic (PV) cell for night air conditioning in lightweight concrete buildings. The PCM-CSS was applied to improve the efficiency of cooling storage system for buildings. The efficiency of PCM-CSS and the energy consumption between using electricity power from the Provincial Electricity Authority (PEA) and PEA with PV were studied in the experiment. The melting point of paraffin was selected at 22 °C to store the coldness from refrigerant (R410A). The PCM-CSS processes consist of the charging and discharging. The frequency of compressor was varied in five cases for charging process, namely 90, 70, 60, 50, and 40 Hz. The result indicates that the 50 Hz is an appropriate frequency for cooling charging to PCM with 3.09 of COP, 10.53 (Btu/hr)/W of EER and 7.03% of ηC,Charg. Eventually, the result of the comparison on energy consumption between using electricity power from PEA and PEA with PV reveals the PCM-CSS using electricity power from PEA without PV is approximately 6.11 kWh (charging process for 8 hours.). On the other hand, the electricity power usage from PEA with PV can decrease the energy consumption by approximately 1.13 kWh or can be saved around 81.57% as compared with the electricity power usage from PEA only. The condensing unit of the PCM-CSS, accounting for 55% of the total consumption, represents the greatest segment of power consumption

    Development and Characterization of Composite Desiccant Impregnated with LiCl for Thermoelectric Dehumidifier (TED)

    No full text
    Aqueous salt solutions (LiCl) were impregnated into a porous host matrix to create composite desiccant materials (silica gel). The authors of this paper fabricated and analyzed composite desiccant-coated aluminum sheets (DCAS) with varying LiCl mass concentrations. Nitrogen sorption results revealed that the Brunauer–Emmett–Teller (BET) surface area and pore volume of the composite desiccant-coated aluminum sheets decreased. Furthermore, composite DCAS had lower nitrogen sorption than silica-gel-coated aluminum sheets (SGCAS). According to the results, the composite DCAS had the highest thermal conductivity, measuring 6.1 Wm−1 K−1, doubling that of the SGCAS. For evaluating sorption kinetics, the linear driving force model (LDF) was used, and composite DCAS showed greater dynamic sorption quantities and sorption rate coefficients than SGCAS. Furthermore, three different moisture sorption isotherm models were used to fit the experimental results: the Brunauer–Emmett–Teller (BET) model, the Guggenheim–Anderson–Boer (GAB) model, and the double log polynomial (DLP) model. The DLP model was shown to be the best model for predicting the moisture sorption isotherms of DCAS. Additionally, the composite desiccant-coated heat sink (DCHS) of the thermoelectric dehumidifier (TED) was evaluated and compared to silica gel in terms of dehumidification capacity. According to the findings, the outlet air humidity ratio of the composite DCHS reached a minimum of 10.23 g kg−1, and the dehumidification capacity was 0.117 kg h−1 when the input electrical voltage was kept at 9 V
    corecore