84 research outputs found

    Ionic Cloud Distribution close to a Charged Surface in the Presence of Salt

    Full text link
    Despite its importance, the understanding of ionic cloud distribution close to a charged macroion under physiological salt conditions has remained very limited especially for strongly coupled systems with, for instance, multivalent counterions. Here we present a formalism that predicts both counterion and coion distributions in the vicinity of a charged macroion for an arbitrary amount of added salt and in both limits of mean field and strong coupling. The distribution functions are calculated explicitly for ions next to an infinite planar charged wall. We present a schematic phase diagram identifying different physical regimes in terms of electrostatic coupling parameter and bulk salt concentration.Comment: 6 pages, 2 figure

    Segregation, precipitation, and \alpha-\alpha' phase separation in Fe-Cr alloys: a multi-scale modelling approach

    Full text link
    Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.Comment: 16 pages, 14 figures, 52 reference

    Counterion-mediated Electrostatic Interactions between Helical Molecules

    Full text link
    We study the interaction of two cylinders with helical charge distribution mediated by neutralizing counterions, by analyzing the separation as well as the azimuthal angle dependence of the interaction force in the weak and strong coupling limit. While the azimuthal dependence of the interaction in the weak coupling limit is overall small and mostly negligible, the strong coupling limit leads to qualitatively new features of the interaction, among others also to an orientationally dependent optimal configuration that is driven by angular dependence of the correlation attraction. We investigate the properties of this azimuthal ordering in detail and compare it to existing results.Comment: 11 pages, 12 figure

    Calibration of RADMON radiation monitor onboard Aalto-1 CubeSat

    Get PDF
    RADMON is a small radiation monitor designed and assembled by students of University of Turku and University of Helsinki. It is flown on-board Aalto-1, a 3-unit CubeSat in low Earth orbit at about 500 km altitude. The detector unit of the instrument consists of two detectors, a Si solid-state detector and a CsI(Tl) scintillator, and utilizes the ΔE-E technique to determine the total energy and species of each particle hitting the detector. We present the results of the on-ground and in-flight calibration campaigns of the instrument, as well as the characterization of its response through extensive simulations within the Geant4 framework. The overall energy calibration margin achieved is about 5%. The full instrument response to protons and electrons is presented and the issue of proton contamination of the electron channels is quantified and discussed

    Dynamics and Scaling of 2D Polymers in a Dilute Solution

    Get PDF
    The breakdown of dynamical scaling for a dilute polymer solution in 2D has been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)]. However, we show here both numerically and analytically that dynamical scaling holds when the finite-size dependence of the relevant dynamical quantities is properly taken into account. We carry out large-scale simulations in 2D for a polymer chain in a good solvent with full hydrodynamic interactions to verify dynamical scaling. This is achieved by novel mesoscopic simulation techniques

    Territorial Developments Based on Graffiti: a Statistical Mechanics Approach

    Full text link
    We study the well-known sociological phenomenon of gang aggregation and territory formation through an interacting agent system defined on a lattice. We introduce a two-gang Hamiltonian model where agents have red or blue affiliation but are otherwise indistinguishable. In this model, all interactions are indirect and occur only via graffiti markings, on-site as well as on nearest neighbor locations. We also allow for gang proliferation and graffiti suppression. Within the context of this model, we show that gang clustering and territory formation may arise under specific parameter choices and that a phase transition may occur between well-mixed, possibly dilute configurations and well separated, clustered ones. Using methods from statistical mechanics, we study the phase transition between these two qualitatively different scenarios. In the mean-field rendition of this model, we identify parameter regimes where the transition is first or second order. In all cases, we have found that the transitions are a consequence solely of the gang to graffiti couplings, implying that direct gang to gang interactions are not strictly necessary for gang territory formation; in particular, graffiti may be the sole driving force behind gang clustering. We further discuss possible sociological -- as well as ecological -- ramifications of our results

    Aalto-1, multi-payload CubeSat: In-orbit results and lessons learned

    Get PDF
    The in-orbit results and lessons learned of the first Finnish satellite Aalto-1 are briefly presented in this paper. Aalto-1, a three-unit CubeSat which was launched in June 2017, performed Aalto Spectral Imager (AaSI), Radiation Monitor (RADMON) and Electrostatic Plasma Brake (EPB) missions. The satellite partly fulfilled its mission objectives and allowed to either perform or attempt the experiments. Although attitude control was partially functional, AaSI and RADMON were able to acquire valuable measurements. EPB was successfully commissioned but the tether deployment was not successful.In this paper, we present the intended mission, in-orbit experience in operating and troubleshooting the satellite, an overview of experiment results, as well as lessons learned that will be used in future missions.</div

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure
    • …
    corecore