19 research outputs found

    Etude de gÚnes impliqués dans la biosynthÚse du parfum chez la rose, Rosa x hybrida

    No full text
    Roses are one of the most popular ornamental plants, whose volatiles are not only involved in environmental interactions but also widely used for industries. Chapter 1 describes the cultivation history of roses, usages of rose fragrance, knowledge on the biosynthesis of rose scent compounds, as well as non-canonical biosynthesis pathways of other plant volatiles. Experimental chapters (Chapter 2 and 3) analyse the functions of two genes expressed in rose petals, both encoding Nudix hydrolase 1 (NUDX1) protein. NUDX1-1 gene (named RhNUDX1) was first discovered by comparing the transcriptomes of two rose cultivars, the scented Rosa x hybrida cv. ‘Papa Meilland’ (PM) and the unscented R. x hybrida cv. ‘Rouge Meilland’ (RM). RhNUDX1-1 was only expressed in scented PM and its expression exhibited a positive correlation with the monoterpenoid production in petals, especially geraniol. When studying a rose progeny of R. chinensis cv. ‘Old Blush’ (OB) and R. x wichurana (Rw), an orthologous gene RcNUDX1-1a was found in OB, whose expression also had positive correlation with geraniol emission. A paralogous gene in Rw, RwNUDX1-2, was discovered and it was shown that its expression displayed a correlation with the sesquiterpenoid production, especially E,E-farnesol. A series of in vitro and in vivo assays as well as correlation analyses verified the function of RhNUDX1-1, which hydrolysed geranyl diphosphate (GPP) to geranyl monophosphate (GP). The transformation of GP into geraniol is supposed to be processed by an, as yet, unidentified phosphatase. The prediction of the localisation together with green fluorescent protein (GFP) fusion experiments revealed that RhNUDX1-1 was located in the cytosol. A series of approaches (QTL analyses, enzymatic assays and transient expression studies) were also applied to RwNUDX1-2, demonstrating its function in the production of E,E-farnesol. Mapping of RwNUDX1-2 and subcellular localization of the protein are still under investigation. Furthermore, protein crystallography and protein modelling illustrated the NUDX1-substrate interaction and proposed several residues that may be important for substrate recognition, although further experimental and computational data are required to gain more insight into the enzymatic mechanism. Collectively, these data revealed an alternative pathway for the biosynthesis of terpenoids, especially geraniol and E,E-farnesol, in rose, via the hydrolysis of prenyl diphosphates by NUDX1 enzymes. Transcriptional regulation of RcNUDX1-1a or RwNUDX1-2 probably plays an important role in the scent production by rose petals. Therefore, three promoters, pOB1a (promoter of RcNUDX1-1a), pOB1b (promoter of RcNUDX1-1b, not expressed in rose petals), pRw (promoter of RwNUDX1-2) were cloned and tested (Chapter 4). In addition, two transcription factors (TFs), RcbHLH79 (OB TF) and RwbHLH79 (Rw TF) candidates were chosen via RNA-Seq analysis as their expression correlated with expression of RcNUDX1-1a or RwNUDX1-2, respectively (Chapter 5). Using transient expression assays with a reporter gene, ÎČ-glucuronidase (GUS) in rose petals, it was shown that all three promoters could drive the expression of GUS, suggesting that all of them are active. However, quantification of promoter activities is still needed. OB TF and Rw TF were introduced into Nicotiana benthamiana leaves together with the promoters driving GUS , to determine if they were able to activate these promoters. However, no significant transactivation was detected in any promoter-TF combination. The expression of the TF in the progeny was also analysed but, due to the similarity of the sequences of family members, no conclusive data were obtained. Transcriptomes of the petals four roses, two of which produce geraniol but not E,E-farnesol and two that produce E,E-farnesol but not geraniol, were analysed (Chapter 5) and this resulted in a list of putative scent related genes and transcription factors for further studyLa rose est l'une des plantes ornementales les plus populaires, dont les composĂ©s volatils sont non seulement impliquĂ©s dans les interactions des fleurs avec l’environnement au sens large, mais aussi largement utilisĂ©s dans l’industrie des arĂŽmes et parfums. Le chapitre 1 dĂ©crit l'histoire de la culture de la rose, les usages de son parfum, les connaissances actuelles sur la biosynthĂšse des composĂ©s de ce parfum, ainsi que les voies de biosynthĂšse des composĂ©s volatils qui ont Ă©tĂ© rĂ©cemment Ă©lucidĂ©es chez diffĂ©rentes plantes. Les chapitres expĂ©rimentaux 2 et 3 analysent les fonctions de deux gĂšnes exprimĂ©s dans les pĂ©tales de rose. Ils codent pour des protĂ©ines Nudix hydrolase 1 (NUDX1). Le gĂšne NUDX1-1 (nommĂ© RhNUDX1 dans la publication) a Ă©tĂ© dĂ©couvert en comparant les transcriptomes de deux cultivars de rose, Rosa x hybrida cv. 'Papa Meilland' (PM) trĂšs parfumĂ© et R. x hybrida cv. 'Rouge Meilland' (RM), dĂ©pourvu de parfum. Le gĂšne RhNUDX1-1 n'est exprimĂ© que chez PM et son expression est corrĂ©lĂ©e avec la production de monoterpĂšnes dans les pĂ©tales, en particulier de gĂ©raniol. Lors de l'Ă©tude d'une descendance issue du croisement de R. chinensis cv. ‘Old Blush’ (OB) et de R. x wichurana (Rw), le gĂšne orthologue RcNUDX1-1a, prĂ©sentant la mĂȘme fonction, a Ă©tĂ© caractĂ©risĂ© chez OB. Un gĂšne paralogue, RwNUDX1-2, a Ă©tĂ© dĂ©couvert chez Rw et il a Ă©tĂ© dĂ©montrĂ© que son expression prĂ©sentait une corrĂ©lation avec la production sesquiterpĂšnes, en particulier de E,E-farnesol. Une sĂ©rie d'analyses in vitro et in vivo ainsi qu'une analyse de corrĂ©lation ont permis de vĂ©rifier la fonction de RhNUDX1-1, qui hydrolyse le gĂ©ranyl diphosphate (GPP) en gĂ©ranyl monophosphate (GP). Une phosphatase non identifiĂ©e pourrait catalyser la transformation du GP en gĂ©raniol. Des expĂ©riences de fusion avec la Green Fluorescent Protein (GFP), suivies de transformation transitoire de feuilles de tabac, ont rĂ©vĂ©lĂ© que RhNUDX1-1 Ă©tait localisĂ©e dans le cytoplasme. Les mĂȘmes approches (analyses QTL, essais enzymatiques et expression transitoire) ont Ă©galement Ă©tĂ© appliquĂ©es Ă  RwNUDX1-2, dĂ©montrant sa fonction dans la production de E,E-farnesol. La cartographie de RwNUDX1-2 et la localisation subcellulaire de la protĂ©ine sont encore Ă  l'Ă©tude. De plus, la cristallographie des protĂ©ines et la modĂ©lisation ont Ă©tĂ© employĂ©es pour Ă©tudier le mĂ©canisme de l'interaction NUDX1-substrat et les acides aminĂ©s potentiellement importants pour la reconnaissance du substrat. Collectivement, ces donnĂ©es rĂ©vĂšlent une voie alternative pour la biosynthĂšse des terpĂšnes, en particulier le gĂ©raniol et E,E-farnesol, via l'hydrolyse des prĂ©nyl diphosphates par les enzymes NUDX1. Nos rĂ©sultats montrent que la production de composĂ©s volatils dans les pĂ©tales est fortement corrĂ©lĂ©e avec l’expression des gĂšnes des voies de biosynthĂšse. Par consĂ©quent, la rĂ©gulation transcriptionnelle de RcNUDX1-1a et RwNUDX1-2 joue probablement un rĂŽle important dans la production de parfum. Les promoteurs de RcNUDX1-1a, RcNUDX1-1b, et RwNUDX1-2 et deux facteurs de transcription (FT), RcbHLH79 (OB TF) et RwbHLH79 (Rw TF) ont ainsi Ă©tĂ© isolĂ©s et testĂ©s (Chapitre 4). Les FT candidats ont Ă©tĂ© choisis lors d’une analyse RNA-Seq (Chapitre 5). En utilisant des tests d'expression transitoire avec le gĂšne rapporteur GUS (ÎČ-glucuronidase) dans les pĂ©tales de rose, il a Ă©tĂ© montrĂ© que les trois promoteurs pouvaient entraĂźner l'expression de GUS. Les deux FT ont ensuite Ă©tĂ© introduits dans des feuilles de tabac avec les promoteurs testĂ©s, pour voir s'ils Ă©taient capables d'activer ces promoteurs. Aucune transactivation significative n'a Ă©tĂ© dĂ©tectĂ©e, mĂȘme si Rw TF semblait pouvoir activer une construction tĂ©moin (promoteur du gĂšne de la tomate TPS5. Les transcriptomes de quatre cultivars de rose, dont deux produisent du gĂ©raniol mais pas de E,E-farnesol et deux autres produisent du E,E-farnesol mais pas de gĂ©raniol, ont Ă©tĂ© analysĂ©s (Chapitre 5) et ont abouti Ă  une liste de FT putatifs pour une Ă©tude plus approfondi

    My way: noncanonical biosynthesis pathways for plant volatiles

    Get PDF
    International audiencePlant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering

    raw data phenolics B nigra _ effects of herbivory and pollination

    No full text
    Include raw data related to effects of herbivory and pollination on the phenolic profile of Brassica nigra plant

    raw data volatiles B nigra _ effects of herbivory and pollination

    No full text
    Include raw data related to effects of herbivory and pollination on the volatile profile of Brassica nigra plant

    raw data behaviour syphid flies on B nigra _ effects of herbivory and pollination

    No full text
    Include raw data related to effects of herbivory and pollination on the behavioural responses of the syrphid fly Episyrphus balteatus

    raw data behaviour butterflies on B nigra _ effects of herbivory and pollination

    No full text
    Include raw data related to effects of herbivory and pollination on the behavioural responses of Pieris brassicae butterflies

    Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (Nasturtium officinale)

    Get PDF
    The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation

    Keeping the shoot above water - submergence triggers antithetical growth responses in stems and petioles of watercress (<i>Nasturtium officinale</i>)

    Get PDF
    - The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. - We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. - Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. - Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation
    corecore