5,538 research outputs found
Resummation and Shower Studies
The transverse momentum spectra of the Z and Higgs bosons are studied, as
probes of the consequences of multiple parton emissions in hadronic events.
Emphasis is put on constraints, present in showers, that go beyond conventional
leading log. It is shown that, if such constraints are relaxed, better
agreement can be obtained with experimental data and with resummation
descriptions.Comment: 6 pages, LaTeX, 3 eps figures, submitted to the proceedings of the
Workshop on Physics at TeV Colliders, Les Houches, France, 26 May -- 6 June
200
A Comparison of Predictions for SM Higgs Boson Production at the LHC
This paper describes a comparison of most of the available predictions for
the cross section and transverse momentum distribution for a 125 GeV mass Higgs
at the LHC, including those from the PYTHIA and HERWIG parton shower Monte
Carlos and from four resummation calculations.Comment: 7 pages, submitted to proceedings of the Workshop on Physics at TeV
Colliders, Les Houches 200
Report of the QCD Tools Working Group
We report on the activities of the ``QCD Tools for heavy flavors and new
physics searches'' working group of the Run II Workshop on QCD and Weak Bosons.
The contributions cover the topics of improved parton showering and comparisons
of Monte Carlo programs and resummation calculations, recent developments in
Pythia, the methodology of measuring backgrounds to new physics searches,
variable flavor number schemes for heavy quark electro-production, the
underlying event in hard scattering processes, and the Monte Carlo MCFM for NLO
processes.Comment: LaTeX, 47 pages, 41 figures, 10 tables, uses run2col.sty, to appear
in the Proceedings of the Workshop on "QCD and Weak Boson Physics in Run II",
Fermilab, March - November 199
QCD
We discuss issues of QCD at the LHC including parton distributions, Monte
Carlo event generators, the available next-to-leading order calculations,
resummation, photon production, small x physics, double parton scattering, and
backgrounds to Higgs production.Comment: 115 pages, Latex, 47 figures, to appear in the Report of the ``1999
CERN Workshop on SM Physics (and more) at the LHC'', S. Catani, M. Dittmar,
D. Soper, W.J. Stirling, S. Tapprogge (convenors
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes
The Crab pulsar is the only astronomical pulsed source detected at very high
energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is
not yet fully understood, although several theoretical models have been
proposed. In order to test the new models, we measured the light curve and the
spectra of the Crab pulsar with high precision by means of deep observations.
We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in
stereoscopic mode. In order to discuss the spectral shape in connection with
lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known
two pulses per period were detected with a significance of and
. In addition, significant emission was found between the two
pulses with . We discovered the bridge emission above 50 GeV
between the two main pulses. This emission can not be explained with the
existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure
Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies
We present the first joint analysis of gamma-ray data from the MAGIC
Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for
gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We
combine 158 hours of Segue 1 observations with MAGIC with 6-year observations
of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the
annihilation cross-section for dark matter particle masses between 10 GeV and
100 TeV - the widest mass range ever explored by a single gamma-ray analysis.
These limits improve on previously published Fermi-LAT and MAGIC results by up
to a factor of two at certain masses. Our new inclusive analysis approach is
completely generic and can be used to perform a global, sensitivity-optimized
dark matter search by combining data from present and future gamma-ray and
neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added.
Matches published version JCAP 02 (2016) 03
Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009
We study the multi-band variability and correlations of the TeV blazar Mrk
421 on year time scales, which can bring additional insight on the processes
responsible for its broadband emission. We observed Mrk 421 in the very high
energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March
2007 to June 2009 for a total of 96 hours of effective time after quality cuts.
The VHE flux variability is quantified with several methods, including the
Bayesian Block algorithm, which is applied to data from Cherenkov telescopes
for the first time. The 2.3 year long MAGIC light curve is complemented with
data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO,
and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an
excellent characterisation of the multi-band variability and correlations over
year time scales. Mrk 421 was found in different gamma-ray emission states
during the 2.3 year long observation period. Flares and different levels of
variability in the gamma-ray light curve could be identified with the Bayesian
Block algorithm. The same behaviour of a quiet and active emission was found in
the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct
correlation in time. The behaviour of the optical light curve of GASP-WEBT and
the radio light curves by OVRO and Mets\"ahovi are different as they show no
coincident features with the higher energetic light curves and a less variable
emission. The fractional variability is overall increasing with energy. The
comparable variability in the X-ray and VHE bands and their direct correlation
during both high- and low-activity periods spanning many months show that the
electron populations radiating the X-ray and gamma-ray photons are either the
same, as expected in the Synchrotron-Self-Compton mechanism, or at least
strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping
([email protected]), Marina Manganaro
([email protected]), Diego Tescaro ([email protected]), To be published
in Astronomy&Astrophysics (A&A), 12 pages, 9 figure
- …
