13 research outputs found

    Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance

    Get PDF
    The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2[superscript hum]), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2[superscript hum/hum] mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2[superscript hum/hum] mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.Nancy Lurie Marks Family FoundationSimons Foundation (Autism Research Initiative Grant 137593)National Institutes of Health (U.S.) (Grant R01 MH060379)Wellcome Trust (London, England) (Grant 075491/Z/04)Wellcome Trust (London, England) (Grant 080971)Fondation pour la recherche medicaleMax Planck Society for the Advancement of Scienc

    External beam radiation therapy and enadenotucirev: inhibition of the DDR and mechanisms of radiation-mediated virus increase

    Get PDF
    Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production. We show that EnAd, an Ad3/Ad11p chimeric oncolytic adenovirus currently being trialled in colorectal and other cancers, targets the DDR pathway at a number of junctures. Infection is associated with a decrease in irradiation-induced 53BP1 and Rad51 foci formation, and in total DNA ligase IV levels. We also demonstrate a radiation-associated increase in EnAd production in vitro and in a pilot in vivo experiment. Given the current limitations of in vitro techniques in assessing for synergy between these treatments, we adapted the plaque assay to allow monitoring of viral plaque size and growth and utilised the xCELLigence cell adhesion assay to measure cytotoxicity. Our study provides further evidence on the interaction between adenovirus and radiation in vitro and in vivo and suggests these have at least an additive, and possibly a synergistic, impact on cytotoxicity

    Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

    Get PDF
    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections

    Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes

    No full text
    Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing

    Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes

    Get PDF
    Transcription Activator-Like Effector Nucleases (TALENs) consist of a nuclease domain fused to a DNA binding domain which is engineered to bind to any genomic sequence. These chimeric enzymes can be used to introduce a double strand break at a specific genomic site which then can become the substrate for error-prone non-homologous end joining (NHEJ), generating mutations at the site of cleavage. In this report we investigate the feasibility of achieving targeted mutagenesis by microinjection of TALEN mRNA within the mouse oocyte. We achieved high rates of mutagenesis of the mouse Zic2 gene in all backgrounds examined including outbred CD1 and inbred C3H and C57BL/6J. Founder mutant Zic2 mice (eight independent alleles, with frameshift and deletion mutations) were created in C3H and C57BL/6J backgrounds. These mice transmitted the mutant alleles to the progeny with 100% efficiency, allowing the creation of inbred lines. Mutant mice display a curly tail phenotype consistent with Zic2 loss-of-function. The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required. This technology enables allelic series of mutations to be generated quickly and efficiently in diverse genetic backgrounds and will be a valuable approach to rapidly create mutations in mice already bearing one or more mutant alleles at other genetic loci without the need for lengthy backcrossing

    Targeting TOPK 1 sensitises tumour cells to radiation-induced damage by enhancing replication stress

    Get PDF
    T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage

    Nucleoporin 54 contributes to Homologous recombination repair and post-replicative DNA integrity

    No full text
    The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the Homologous Recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity

    CDK1 inhibition sensitizes normal cells to DNA damage in a cell cycle dependent manner

    Get PDF
    Cyclin-dependent kinase 1 (CDK1) orchestrates the transition from the G2 phase into mitosis and as cancer cells often display enhanced CDK1 activity, it has been proposed as a tumor specific anti-cancer target. Here we show that the effects of CDK1 inhibition are not restricted to tumor cells but can also reduce viability in non-cancer cells and sensitize them to radiation in a cell cycle dependent manner. Radiosensitization by the specific CDK1 inhibitor, RO-3306, was determined by colony formation assays in three tumor lines (HeLa, T24, SQ20B) and three non-cancer lines (HFL1, MRC-5, RPE). Initial results showed that CDK1 inhibition radiosensitized tumor cells, but did not sensitize normal fibroblasts and epithelial cells in colony formation assays despite effective inhibition of CDK1 signaling. Further investigation showed that normal cells were less sensitive to CDK1 inhibition because they remained predominantly in G1 for a prolonged period when plated in colony formation assays. In contrast, inhibiting CDK1 a day after plating, when the cells were going through G2/M phase, reduced their clonogenic survival both with and without radiation. Our finding that inhibition of CDK1 can damage normal cells in a cell cycle dependent manner indicates that targeting CDK1 in cancer patients may lead to toxicity in normal proliferating cells. Furthermore, our finding that cell cycle progression becomes easily stalled in non-cancer cells under normal culture conditions has general implications for testing anti-cancer agents in these cells

    Is there more to eels than slime? : an introduction to papers presented at the ICES theme session in September 2006

    Get PDF
    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biolog

    Nucleoporin 54 contributes to Homologous recombination repair and post-replicative DNA integrity

    No full text
    The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the Homologous Recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity
    corecore