24 research outputs found

    Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS), Rubinstein–Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery

    High rate of autonomic neuropathy in Cornelia de Lange Syndrome

    Get PDF
    Background: Cornelia de Lange Syndrome (CdLS) is a rare congenital disorder characterized by typical facial features, growth failure, limb abnormalities, and gastroesophageal dysfunction that may be caused by mutations in several genes that disrupt gene regulation early in development. Symptoms in individuals with CdLS suggest that the peripheral nervous system (PNS) is involved, yet there is little direct evidence. Method: Somatic nervous system was evaluated by conventional motor and sensory nerve conduction studies and autonomic nervous system by heart rate variability, sympathetic skin response and sudomotor testing. CdLS Clinical Score and genetic studies were also obtained. Results: Sympathetic skin response and sudomotor test were pathological in 35% and 34% of the individuals with CdLS, respectively. Nevertheless, normal values in large fiber nerve function studies. Conclusions: Autonomic nervous system (ANS) dysfunction is found in many individuals with Cornelia de Lange Syndrome, and could be related to premature aging

    Two-step ATP-driven opening of cohesin head

    Get PDF
    The cohesin ring is a protein complex composed of four core subunits: Smc1A, Smc3, Rad21 and Stag1/2. It is involved in chromosome segregation, DNA repair, chromatin organization and transcription regulation. Opening of the ring occurs at the "head" structure, formed of the ATPase domains of Smc1A and Smc3 and Rad21. We investigate the mechanisms of the cohesin ring opening using techniques of free molecular dynamics (MD), steered MD and quantum mechanics/molecular mechanics MD (QM/MM MD). The study allows the thorough analysis of the opening events at the atomic scale: I) ATP hydrolysis at the Smc1A site, evaluating the role of the carboxy-terminal domain of Rad21 in the process; ii) the activation of the Smc3 site potentially mediated by the movement of specific amino acids; and iii) opening of the head domains after the two ATP hydrolysis events. Our study suggests that the cohesin ring opening is triggered by a sequential activation of the ATP sites in which ATP hydrolysis at the Smc1A site induces ATPase activity at the Smc3 site. Our analysis also provides an explanation for the effect of pathogenic variants related to cohesinopathies and cancer

    Case report: A novel case of parental mosaicism in SMC1A gene causes inherited Cornelia de Lange syndrome

    Get PDF
    Ultimate advances in genetic technologies have permitted the detection of transmitted cases of congenital diseases due to parental gonadosomatic mosaicism. Regarding Cornelia de Lange syndrome (CdLS), up to date, only a few cases are known to follow this inheritance pattern. However, the high prevalence of somatic mosaicism recently reported in this syndrome (∼13%), together with the disparity observed in tissue distribution of the causal variant, suggests that its prevalence in this disorder could be underestimated. Here, we report a new case of parental gonadosomatic mosaicism in SMC1A gene that causes inherited CdLS, in which the mother of the patient carries the causative variant in very low allele frequencies in buccal swab and blood. While the affected child presents with typical CdLS phenotype, his mother does not show any clinical manifestations. As regards SMC1A, the difficulty of clinical identification of carrier females has been already recognized, as well as the gender differences observed in CdLS expressivity when the causal variant is found in this gene. Currently, the use of DNA deep-sequencing techniques is highly recommended when it comes to molecular diagnosis of patients, as well as in co-segregation studies. These enable us to uncover gonadosomatic mosaic events in asymptomatic or oligosymptomatic parents that had been overlooked so far, which might have great implications regarding genetic counseling for recurrence risk

    Identification and Functional Characterization of Two Intronic NIPBL Mutations in Two Patients with Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a rare genetically heterogeneous disorder with a high phenotypic variability including mental retardation, developmental delay, and limb malformations. The genetic causes in about 30% of patients with CdLS are still unknown. We report on the functional characterization of two intronic NIPBL mutations in two patients with CdLS that do not affect a conserved splice-donor or acceptor site. Interestingly, mRNA analyses showed aberrantly spliced transcripts missing exon 28 or 37, suggesting the loss of the branch site by the c.5329-15A>G transition and a disruption of the polypyrimidine by the c.6344del(-13)-(-8) deletion. While the loss of exon 28 retains the reading frame of the NIBPL transcript resulting in a shortened protein, the loss of exon 37 shifts the reading frame with the consequence of a premature stop of translation. Subsequent quantitative PCR analysis demonstrated a 30% decrease of the total NIPBL mRNA levels associated with the frameshift transcript. Consistent with our results, this patient shows a more severe phenotype compared to the patient with the aberrant transcript that retains its reading frame. Thus, intronic variants identified by sequencing analysis in CdLS diagnostics should carefully be examined before excluding them as nonrelevant to disease

    Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood

    Get PDF
    Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families

    The gene encoding the ketogenic enzyme HMGCS2 displays a unique expression during gonad development in mice

    Get PDF
    Disorders/differences of sex development (DSD) cause profound psychological and reproductive consequences for the affected individuals, however, most are still unexplained at the molecular level. Here, we present a novel gene, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMGCS2), encoding a metabolic enzyme in the liver important for energy production from fatty acids, that shows an unusual expression pattern in developing fetal mouse gonads. Shortly after gonadal sex determination it is up-regulated in the developing testes following a very similar spatial and temporal pattern as the male-determining gene Sry in Sertoli cells before switching to ovarian enriched expression. To test if Hmgcs2 is important for gonad development in mammals, we pursued two lines of investigations. Firstly, we generated Hmgcs2-null mice using CRISPR/Cas9 and found that these mice had gonads that developed normally even on a sensitized background. Secondly, we screened 46,XY DSD patients with gonadal dysgenesis and identified two unrelated patients with a deletion and a deleterious missense variant in HMGCS2 respectively. However, both variants were heterozygous, suggesting that HMGCS2 might not be the causative gene. Analysis of a larger number of patients in the future might shed more light into the possible association of HMGCS2 with human gonadal development.Stefan Bagheri-Fam, Huijun Chen, Sean Wilson, Katie Ayers, James Hughes, Frederique Sloan-Bena, Pierre Calvel, Gorjana Robevska, Beatriz Puisac, Kamila Kusz-Zamelczyk, Stefania Gimelli, Anna Spik, Jadwiga Jaruzelska, Alina Warenik-Szymankiewicz, Sultana Faradz, Serge Nef, Juan Pie, Paul Thomas, Andrew Sinclair, Dagmar Wilhel

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ

    Get PDF
    Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today’s broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans.https://doi.org/10.1186/s12864-017-4035-
    corecore